
数学(理工农医类)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.复数等于( )
A. B. C. D.
2.不等式的解集是( )
A. B. C. D.
3.设是两个集合,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分又不必要条件
4.设是非零向量,若函数的图象是一条直线,则必有( )
A. B. C. D.
5.设随机变量服从标准正态分布,已知,则=( )
A.0.025 B.0.050 C.0.950 D.0.975
6.函数的图象和函数的图象的交点个数是( )
A.4 B.3 C.2 D.1
7.下列四个命题中,不正确的是( )
A.若函数在处连续,则
B.函数的不连续点是和
C.若函数,满足,则
D.
8.棱长为1的正方体的8个顶点都在球的表面上,分别是棱,的中点,则直线被球截得的线段长为( )
A. B. C. D.
9.设分别是椭圆()的左、右焦点,若在其右准线上存在使线段的中垂线过点,则椭圆离心率的取值范围是( )
A. B. C. D.
10.设集合,都是的含两个元素的子集,且满足:对任意的,(,),都有(表示两个数中的较小者),则的最大值是( )
A.10 B.11 C.12 D.13
二、填空题:本大题共5小题,每小题5分,共25分.把答案填在横线上.
11.圆心为且与直线相切的圆的方程是 .
12.在中,角所对的边分别为,若,b=,,则 .
13.函数在区间上的最小值是 .
14.设集合,,
(1)的取值范围是 ;
(2)若,且的最大值为9,则的值是 .
15.将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第次全行的数都为1的是第 行;第61行中1的个数是 .
第1行 1 1
第2行 1 0 1
第3行 1 1 1 1
第4行 1 0 0 0 1
第5行 1 1 0 0 1 1
…… ………………………………………
图1
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
16.(本小题满分12分)
已知函数,.
(I)设是函数图象的一条对称轴,求的值.
(II)求函数的单调递增区间.
17.(本小题满分12分)
某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互的,且各人的选择相互之间没有影响.
(I)任选1名下岗人员,求该人参加过培训的概率;
(II)任选3名下岗人员,记为3人中参加过培训的人数,求的分布列和期望.
18.(本小题满分12分)
如图2,分别是矩形的边的中点,是上的一点,将,分别沿翻折成,并连结,使得平面平面,且.连结,如图3.
图2 图3
(I)证明:平面平面;
(II)当,时,求直线和平面所成的角.
19.(本小题满分12分)
如图4,某地为了开发旅游资源,欲修建一条连接风景点和居民区的公路,点所在的山坡面与山脚所在水平面所成的二面角为(),且,点到平面的距离(km).沿山脚原有一段笔直的公路可供利用.从点到山脚修路的造价为万元/km,原有公路改建费用为万元/km.当山坡上公路长度为km()时,其造价为万元.已知,,.
(I)在上求一点,使沿折线修建公路的总造价最小;
(II) 对于(I)中得到的点,在上求一点,使沿折线修建公路的总造价最小.
(III)在上是否存在两个不同的点,,使沿折线修建公路的总造价小于(II)中得到的最小总造价,证明你的结论.
20.(本小题满分12分)
已知双曲线的左、右焦点分别为,过点的动直线与双曲线相交于两点.
(I)若动点满足(其中为坐标原点),求点的轨迹方程;
(II)在轴上是否存在定点,使·为常数?若存在,求出点的坐标;若不存在,请说明理由.
21.(本小题满分13分)
已知()是曲线上的点,是数列的前项和,且满足,….
(I)证明:数列()是常数数列;
(II)确定的取值集合,使时,数列是单调递增数列;
(III)证明:当时,弦()的斜率随单调递增.
参
1.【答案】C
【解析】
2.【答案】D
【解析】由得,所以解集为.
3.【答案】B
【解析】由韦恩图知;反之,
4. 【答案】A
【解析】,若函数
的图象是一条直线,即其二次项系数为0, 0,
5.【答案】C
【解析】服从标准正态分布,
6.【答案】B.
【解析】由图像易知交点共有3个。
7 【答案】C.
【解析】的前提是必须都存在!
8.【答案】D.
【解析】正方体对角线为球直径,所以,在过点E、F、O的球的大圆中,
由已知得d=,,所以EF=2r=。
9. 【答案】D
【解析】由已知P,所以的中点Q的坐标为,由
当时,不存在,此时为中点,
综上得
10.【答案】B
【解析】含2个元素的子集有15个,但{1,2}、{2,4}、{3,6}只能取一个;
{1,3}、{2,6}只能取一个;{2,3}、{4,6}只能取一个,
故满足条件的两个元素的集合有11个。
11.【答案】
【解析】半径R=,所以圆的方程为
12.【答案】
【解析】由正弦定理得,所以
13.【答案】–16
【解析】
14.【答案】(1) (2)
【解析】(1)由图象可知的取值范围是
(2)若令t=,则在(0,b)处取得最大值,
所以0+2b=9,所以b=.
15.【答案】,32
【解析】由不完全归纳法知,全行都为1的是第行;
故第63行共有个1,逆推知第62行共有32个1,第61行共有32个1。
16.解:(I)由题设知.
因为是函数图象的一条对称轴,所以,
即().
所以.
当为偶数时,,
当为奇数时,.
(II)
.
当,即()时,
函数是增函数,
故函数的单调递增区间是().
17.解:任选1名下岗人员,记“该人参加过财会培训”为事件,“该人参加过计算机
培训”为事件,由题设知,事件与相互,且,.
(I)解法一:任选1名下岗人员,该人没有参加过培训的概率是
所以该人参加过培训的概率是.
解法二:任选1名下岗人员,该人只参加过一项培训的概率是
该人参加过两项培训的概率是.
所以该人参加过培训的概率是.
(II)因为每个人的选择是相互的,所以3人中参加过培训的人数服从二项分布,,,即的分布列是
| 0 | 1 | 2 | 3 | |
| 0.001 | 0.027 | 0. 243 | 0.729 |
(或的期望是)
18.解:解法一:(I)因为平面平面,平面平面,,平面,所以平面,又平面,
所以平面平面.
(II)过点作于点,连结.
由(I)的结论可知,平面,
所以是和平面所成的角.
因为平面平面,平面平面,,
平面,所以平面,故.
因为,,所以可在上取一点,使,
又因为,所以四边形是矩形.
由题设,,,则.所以,
,,.
因为平面,,所以平面,从而.
故,.
又,由得.
故.
即直线与平面所成的角是.
解法二:(I)因为平面平面,平面平面,,
平面,所以平面,从而.又,
所以平面.因为平面,所以平面平面.
(II)由(I)可知,平面.故可以为原点,分别以直线
为轴、轴、轴建立空间直角坐标系(如图),
由题设,,,则,
,,相关各点的坐标分别是,
,,.
所以,.
设是平面的一个法向量,
由得故可取.
过点作平面于点,因为,所以,
于是点在轴上.
因为,所以,.
设(),由,解得,
所以.
设和平面所成的角是,则
.
故直线与平面所成的角是.
19 .解:(I)如图,,,,
由三垂线定理逆定理知,,所以是
山坡与所成二面角的平面角,则,
.
设,.则
.
记总造价为万元,
据题设有
当,即时,总造价最小.
(II)设,,总造价为万元,根据题设有
.
则,由,得.
当时,,在内是减函数;
当时,,在内是增函数.
故当,即(km)时总造价最小,且最小总造价为万元.
(III)解法一:不存在这样的点,.
事实上,在上任取不同的两点,.为使总造价最小,显然不能位于与
之间.故可设位于与之间,且=,,,总造价为万元,则.类似于(I)、(II)讨论知,,,当且仅当,同时成立时,上述两个不等式等号同时成立,此时,,取得最小值,点
分别与点重合,所以不存在这样的点,使沿折线修建公路的总造价小于(II)中得到的最小总造价.
解法二:同解法一得
.
当且仅当且,即同时成立时,
取得最小值,以上同解法一.
20.解:由条件知,,设,.
解法一:(I)设,则则,,
,由得
即
于是的中点坐标为.
当不与轴垂直时,,即.
又因为两点在双曲线上,所以,,两式相减得
,即.
将代入上式,化简得.
当与轴垂直时,,求得,也满足上述方程.
所以点的轨迹方程是.
(II)假设在轴上存在定点,使为常数.
当不与轴垂直时,设直线的方程是.
代入有.
则是上述方程的两个实根,所以,,
于是
.
因为是与无关的常数,所以,即,此时=.
当与轴垂直时,点的坐标可分别设为,,
此时.
故在轴上存在定点,使为常数.
解法二:(I)同解法一的(I)有
当不与轴垂直时,设直线的方程是.
代入有.
则是上述方程的两个实根,所以.
.
由①②③得.…………………………………………………④
.……………………………………………………………………⑤
当时,,由④⑤得,,将其代入⑤有
.整理得.
当时,点的坐标为,满足上述方程.
当与轴垂直时,,求得,也满足上述方程.
故点的轨迹方程是.
(II)假设在轴上存在定点点,使为常数,
当不与轴垂直时,由(I)有,.
以上同解法一的(II).
21.解:(I)当时,由已知得.
因为,所以. …… ①
于是. ……②
由②-①得. …… ③
于是. …… ④
由④-③得, …… ⑤
所以,即数列是常数数列.
(II)由①有,所以.由③有,,
所以,.
而 ⑤表明:数列和分别是以,为首项,6为公差的等差数列,
所以,,,
数列是单调递增数列且对任意的成立.
且
.
即所求的取值集合是.
(III)解法一:弦的斜率为
任取,设函数,则
记,则,
当时,,在上为增函数,
当时,,在上为减函数,
所以时,,从而,
所以在和上都是增函数.
由(II)知,时,数列单调递增,
取,因为,所以.
取,因为,所以.
所以,即弦的斜率随单调递增.
解法二:设函数,同解法一得,
在和上都是增函数,
所以,.
故,即弦的斜率随单调递增.
