最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

三角函数公式汇总---经典好用

来源:动视网 责编:小OO 时间:2025-10-03 09:56:37
文档

三角函数公式汇总---经典好用

三角函数三角函数目录同角三角函数间的基本关系式:三角函数的角度换算正余弦定理部分高等内容特殊三角函数值三角函数的计算三角函数定义域和值域初等三角函数导数三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角
推荐度:
导读三角函数三角函数目录同角三角函数间的基本关系式:三角函数的角度换算正余弦定理部分高等内容特殊三角函数值三角函数的计算三角函数定义域和值域初等三角函数导数三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角
三角函数

三角函数

目录 

同角三角函数间的基本关系式: 

三角函数的角度换算 

正余弦定理 

部分高等内容 

特殊三角函数值 

三角函数的计算 

三角函数定义域和值域 

初等三角函数导数 

  三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。

  由于三角函数的周期性,它并不具有单值函数意义上的反函数。

  三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。

  基本初等内容

  它有六种基本函数(初等基本表示):

  函数名 正弦 余弦 正切 余切 正割 余割

  在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有

  正弦函数 sinθ=y/r

  余弦函数 cosθ=x/r

  正切函数 tanθ=y/x

  余切函数 cotθ=x/y

  正割函数 secθ=r/x

  余割函数 cscθ=r/y

  (斜边为r,对边为y,邻边为x。)

  以及两个不常用,已趋于被淘汰的函数:

  正矢函数 versinθ =1-cosθ

  余矢函数 coversθ =1-sinθ 

编辑本段同角三角函数间的基本关系式:

  ·平方关系:

  sin^2(α)+cos^2(α)=1 cos^2a=(1+cos2a)/2 

  tan^2(α)+1=sec^2(α) sin^2a=(1-cos2a)/2

  cot^2(α)+1=csc^2(α)

  ·积的关系:

  sinα=tanα*cosα

  cosα=cotα*sinα

  tanα=sinα*secα 

  cotα=cosα*cscα

  secα=tanα*cscα 

  cscα=secα*cotα

  ·倒数关系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1 

  直角三角形ABC中, 

  角A的正弦值就等于角A的对边比斜边, 

  余弦等于角A的邻边比斜边 

  正切等于对边比邻边,

  ·三角函数恒等变形公式

  ·两角和与差的三角函数:

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  ·三角和的三角函数:

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  ·辅助角公式:

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  ·倍角公式:

  sin(2α)=2sinα·cosα=2/(tanα+cotα)

  cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

  tan(2α)=2tanα/[1-tan^2(α)]

  ·三倍角公式:

  sin(3α)=3sinα-4sin^3(α)

  cos(3α)=4cos^3(α)-3cosα

  ·半角公式:

  sin(α/2)=±√((1-cosα)/2)

  cos(α/2)=±√((1+cosα)/2)

  tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

  ·降幂公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  ·万能公式:

  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

  tanα=2tan(α/2)/[1-tan^2(α/2)]

  ·积化和差公式:

  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

  ·和差化积公式: 

  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

  ·推导公式

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  ·其他:

  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

  cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx

  证明:

  左边=2sinx(cosx+cos2x+...+cosnx)/2sinx

  =[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)

  =[sin(n+1)x+sinnx-sinx]/2sinx=右边

  等式得证

  sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx

  证明:

  左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

  =[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

  =- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边

  等式得证 

编辑本段三角函数的角度换算

  公式一: 

  设α为任意角,终边相同的角的同一三角函数的值相等: 

  sin(2kπ+α)=sinα 

  cos(2kπ+α)=cosα 

  tan(2kπ+α)=tanα 

  cot(2kπ+α)=cotα 

  公式二: 

  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: 

  sin(π+α)=-sinα 

  cos(π+α)=-cosα 

  tan(π+α)=tanα 

  cot(π+α)=cotα 

  公式三: 

  任意角α与 -α的三角函数值之间的关系: 

  sin(-α)=-sinα 

  cos(-α)=cosα 

  tan(-α)=-tanα 

  cot(-α)=-cotα 

  公式四: 

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: 

  sin(π-α)=sinα 

  cos(π-α)=-cosα 

  tan(π-α)=-tanα 

  cot(π-α)=-cotα 

  公式五: 

  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: 

  sin(2π-α)=-sinα 

  cos(2π-α)=cosα 

  tan(2π-α)=-tanα 

  cot(2π-α)=-cotα 

  公式六: 

  π/2±α及3π/2±α与α的三角函数值之间的关系: 

  sin(π/2+α)=cosα 

  cos(π/2+α)=-sinα 

  tan(π/2+α)=-cotα 

  cot(π/2+α)=-tanα 

  sin(π/2-α)=cosα 

  cos(π/2-α)=sinα 

  tan(π/2-α)=cotα 

  cot(π/2-α)=tanα 

  sin(3π/2+α)=-cosα 

  cos(3π/2+α)=sinα 

  tan(3π/2+α)=-cotα 

  cot(3π/2+α)=-tanα 

  sin(3π/2-α)=-cosα 

  cos(3π/2-α)=-sinα 

  tan(3π/2-α)=cotα 

  cot(3π/2-α)=tanα 

  (以上k∈Z) 

编辑本段正余弦定理

  正弦定理是指在一个三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R . 

  余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA 

编辑本段部分高等内容

  ·高等代数中三角函数的指数表示(由泰勒级数易得):

  sinx=[e^(ix)-e^(-ix)]/(2i)

  cosx=[e^(ix)+e^(-ix)]/2

  tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

  泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+… 

  此时三角函数定义域已推广至整个复数集。

  ·三角函数作为微分方程的解:

  对于微分方程组 y=-y'';y=y'''',有通解Q,可证明

  Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。

  补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。 

编辑本段特殊三角函数值

  a 0` 30` 45` 60` 90`

  sina 0 1/2 √2/2 √3/2 1

  cosa 1 √3/2 √2/2 1/2 0

  tana 0 √3/3 1 √3 None

  cota None √3 1 √3/3 0 

编辑本段三角函数的计算

  幂级数 

  c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞) 

  c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)

  它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...cn...及a都是常数, 这种级数称为幂级数.

  泰勒展开式(幂级数展开法):

  f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...

  实用幂级数:

  ex = 1+x+x2/2!+x3/3!+...+xn/n!+...

  ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|<1)

  sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞  cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞  arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|<1)

  arccos x = π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x|<1)

  arctan x = x - x^3/3 + x^5/5 - ... (x≤1)

  sinh x = x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+... (-∞  cosh x = 1+x2/2!+x4/4!+...(-1)k*x2k/(2k)!+... (-∞  arcsinh x = x - 1/2*x3/3 + 1*3/(2*4)*x5/5 - ... (|x|<1)

  arctanh x = x + x^3/3 + x^5/5 + ... (|x|<1)

  在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。

  --------------------------------------------------------------------------------

  傅立叶级数(三角级数) 

  f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx) 

  a0=1/π∫(π..-π) (f(x))dx

  an=1/π∫(π..-π) (f(x)cosnx)dx

  bn=1/π∫(π..-π) (f(x)sinnx)dx

  三角函数的数值符号

  正弦 第一,二象限为正, 第三,四象限为负

  余弦 第一,四象限为正 第二,三象限为负

  正切 第一,三象限为正 第二,四象限为负 

编辑本段三角函数定义域和值域

  sin(x),cos(x)的定义域为R,值域为〔-1,1〕 

  tan(x)的定义域为x不等于π/2+kπ,值域为R 

  cot(x)的定义域为x不等于kπ,值域为R 

编辑本段初等三角函数导数

  y=sinx---y'=cosx 

  y=cosx---y'=-sinx 

  y=tanx---y'=1/(cosx)^2 

  y=cotx---y'=-1/(sinx)^2 

  y=arcsinx---y'=1/√1-x^2 

  y=arccosx---y'=-1/√1-x^2 

  y=arctanx---y'=1/(1+x^2) 

  y=arccotx---y'=-1/(1+x^2)

文档

三角函数公式汇总---经典好用

三角函数三角函数目录同角三角函数间的基本关系式:三角函数的角度换算正余弦定理部分高等内容特殊三角函数值三角函数的计算三角函数定义域和值域初等三角函数导数三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top