
(1)求证:AB•AF=CB•CD;
(2)已知AB=15cm,BC=9cm,P是线段DE上的动点.设DP=x cm,梯形BCDP的面积为ycm2.
①求y关于x的函数关系式.
②y是否存在最大值?若有求出这个最大值,若不存在请说明理由.
2如图,F是正方形ABCD的边CD上的一个动点,BF的垂直平分线交对角线AC于点E,连接BE,FE,则∠EBF的度数是( )
研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定.
定义:六个内角相等的六边形叫等角六边形.
(1)研究性质
①如图1,等角六边形ABCDEF中,三组正对边AB与DE,BC与EF,CD与AF分别有什么位置关系?证明你的结论.
②如图2,等角六边形ABCDEF中,如果有AB=DE,则其余两组正对边BC与EF,CD与AF相等吗?证明你的结论.
③如图3,等角六边形ABCDEF中,如果三条正对角线AD,BE,CF相交于一点O,那么三组正对边AB与DE,BC与EF,CD与AF分别有什么数量关系?证明你的结论.
(2)探索判定
三组正对边分别平行的六边形,至少需要几个内角为120°,才能保证六边形一定是等角六边形?
3如图,已知∠MON=90°,A是∠MON内部的一点,过点A作AB⊥ON,垂足为点B,AB=3厘米,OB=4厘米,动点E,F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度沿OM方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动.设运动时间为t秒(t>0).
(1)当t=1秒时,△EOF与△ABO是否相似?请说明理由;
(2)在运动过程中,不论t取何值时,总有EF⊥OA.为什么?
(3)连接AF,在运动过程中,是否存在某一时刻t,使得S△AEF= S四边形ABOF?若存在,请求出此时t的值;若不存在,请说明理由
4如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是( )
5如图,G是边长为4的正方形ABCD边上一点,矩形DEFG的边EF经过点A,已知GD=5,则矩形DEFG的面积为
6如图,抛物线y=ax2+2ax+b与直线y=x+1交于A、C两点,与y轴交于B,AB∥x轴,且S△ABC=3,D、E是直线y=x+1与坐标轴的交点,
(1)求抛物线的解析式;
(2)在坐标轴上找出所有的点F,使△CEF与△ABD相似,直接写出它的坐标;
(3)P为x轴上一点,Q为此抛物线上一点,是否存在P,使得以A、C、P、Q为顶点的四边形是平行四边形?若存在,请求出P点的坐标;若不存在,请说明理由.
7. 如图,△ABC的面积为60,点D在BC上,BD=2CD,连接AD,点E为AD中点,连接BE并延长交AC于点F,则△AEF的面积为( )
8已知,点O为等边三角形ABC的内心,直线m过点O,过A、B、C三点分别作直线m的垂线,垂足分别为点D、E、F.当直线m与BC平行时(如图1),易证:BE+CF=AD,
当直线m绕点O旋转到与BC不平行时,图2、图3这两种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段AD、BE、CF之间又有怎样的数量关系?请写出你的猜想,不需证明.
已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.
(1)如图1,当点P与点G分别在线段BC与线段AD上时.
①求证:DG=2PC;
②求证:四边形PEFD是菱形;
(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.
如图,抛物线y=ax2+bx+c经过原点,与x轴相交于点E(8,0),抛物线的顶点A在第四象限,点A到x轴的距离AB=4,点P(m,0)是线段OE上一动点,连结PA,将线段PA绕点P逆时针旋转90°得到线段PC,过点C作y轴的平行线交x轴于点G,交抛物线于点D,连结BC和AD.
(1)求抛物线的解析式;
(2)求点C的坐标(用含m的代数式表示);
(3)当以点A、B、C、D为顶点的四边形是平行四边形时,求点P的坐标.
如图,菱形ABCD中,E、F分别是BC、CD的中点,过点E作EG⊥AD于G,连接GF.若∠A=80°,则∠DGF的度数为
如图,已知直线y=-3x+3与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过点A和点C,对称轴为直线l:x=-1,该抛物线与x轴的另一个交点为B.
(1)求此抛物线的解析式;
(2)点P在直线l上,求出使△PAC的周长最小的点P的坐标;
(3)点M在此抛物线上,点N在y轴上,以A、B、M、N为顶点的四边形能否为平行四边形?若能,直接写出所有满足要求的点M的坐标;若不能,请说明理由.
如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.
(1)求证:AP=AO;
(2)求证:PE⊥AO;
(3)当AE=
AC,AB=10时,求线段BO的长度.
如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.
(1)求证:EF=AC.
(2)若∠BAC=45°,求线段AM、DM、BC之间的数量关系.
如图,将1、√2、√3三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2014,2014)表示的两个数的积是( )
