最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

【精品文档】电渗的实验报告-范文word版 (10页)

来源:动视网 责编:小OO 时间:2025-10-08 00:46:16
文档

【精品文档】电渗的实验报告-范文word版 (10页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!==本文为word格式,下载后可方便编辑和修改!==电渗的实验报告篇一:电渗进样的Comsol模拟实验报告电渗进样的Comsol模拟实验报告班级:16110901姓名:刘莉丹学号201X22姓名:彭磊学号201X2307一、实验目的1、初步掌握ComsolMultiphysics的使用方法。2、学习电渗进样的Comsol模拟。二、实验原理COMSOLMultiphysics是一款大型的高级数值仿真软件
推荐度:
导读本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!==本文为word格式,下载后可方便编辑和修改!==电渗的实验报告篇一:电渗进样的Comsol模拟实验报告电渗进样的Comsol模拟实验报告班级:16110901姓名:刘莉丹学号201X22姓名:彭磊学号201X2307一、实验目的1、初步掌握ComsolMultiphysics的使用方法。2、学习电渗进样的Comsol模拟。二、实验原理COMSOLMultiphysics是一款大型的高级数值仿真软件
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!

== 本文为word格式,下载后可方便编辑和修改! ==

电渗的实验报告

篇一:电渗进样的Comsol模拟实验报告

电渗进样的Comsol模拟实验报告

班级:16110901 姓名:刘莉丹学号201X22

姓名:彭磊学号201X2307

一、实验目的

1、初步掌握Comsol Multiphysics的使用方法。

2、学习电渗进样的Comsol模拟。

二、实验原理

COMSOL Multiphysics是一款大型的高级数值仿真软件。广泛应用于各个领域

的科学研究以及工程计算,被当今世界科学家称为“第一款真正的任意多物理

场直接耦合分析软件”。模拟科学和工程领域的各种物理过程,COMSOL Multiphysics以高效的计算性能和杰出的多场双向直接耦合分析能力实现了高

度精确的数值仿真。COMSOL Multiphysics是以有限元法为基础,通过求解偏

微分方程(单场)或偏微分方程组(多场)来实现真实物理现象的仿真,被当

今世界科学家称为“第一款真正的任意多物理场直接耦合分析软件”。用数学方法求解真实世界的物理现象,COMSOL Multiphysics以高效的计算性能和

杰出的多场双向直接耦合分析能力实现了高度精确的数值仿真。目前已经在声学、生物科学、化学反应、弥散、电磁学、流体动力学、燃料电池、地球科学、热传导、微系统、微波工程、光学、光子学、多孔介质、量子力学、射频、半导体、结构力学、传动现象、波的传播等领域得到了广泛的应用。

大量预定义的物理应用模式,范围涵盖从流体流动、热传导、到结构力学、电

磁分析等多种物理场,用户可以快速的建立模型。COMSOL中定义模型非常灵活,材料属性、源项、以及边界条件等可以是常数、任意变量的函数、逻辑表达式、或者直接是一个代表实测数据的插值函数等。

预定义的多物理场应用模式,能够解决许多常见的物理问题。同时,用户也可以自主选择需要的物理场并定义他们之间的相互关系。当然,用户也可以输入自己的偏微分方程(PDEs),并指定它与其它方程或物理之间的关系。

COMSOL Multiphysics力图满足用户仿真模拟的所有需求,成为用户的首选仿真工具。它具有用途广泛、灵活、易用的特性,比其它有限元分析软件强大之处在于,利用附加的功能模块,软件功能可以很容易进行扩展。

三、实验器材

Comsol Multiphysics

四、实验步骤和现象

1、选择2D的空间维度,设置如下条件的耦合场:

(1)不可压缩(mmglf)

(2)传导介质DC(emdc)

(3)电动流(chekf)

2、画一个矩形

相关数据:高5e-5,宽8e-4,中心:X=0,y=0。

复制,旋转九十度,联集撤销内部边界,划分网格。

3、在电动流耦合场模式下选择求解域模式:

相关数据:D各向同性的:1e-11;R:0;Um:2e-15;Z:1;u:u;v:v;V:0。选择边界模式:

相关数据:样液入口和缓冲液入口分别设置为浓度1和浓度0,各出口设置为对流通量。在不可压缩耦合场模式下选择边界模式:

相关数据:样液和缓冲液入口设置为:进口,速度U0为1e-4;各出口设置为压力,粘滞应力P0为0。

4、设置求解器参数,将不可压缩和电动流设置为稳态。(对不可压缩求解,初始值设为初

始值表达式和从初始值使用设定。求解。)选择后处理——绘图参数——表面——速度场观察图像。(下图)5、对电动流求解(初始值设定为初始值表达式和当前解。求解。)选择后处理——绘图参

数——表面——浓度场,观察图像。

6、在电动流耦合场下选择求解域模式:

相关数据:u:0;v:0;V:V。

选择边界模式:

相关数据:所有入口和出口选择通量,设置为:-nmflux_c_chekf。

在传导介质DC耦合场下选择边界模式:

相关数据:样液入口选择点位能10V;缓冲液入口和各出口选择接地;其他边选择电绝缘。

7、设置求解器参数选择瞬态,时间设置为:0:0.01:1。对传导介质求解(初始值设置为初始

值表达式和当前解。求解。)后处理——绘图参数——表面——电位能,得到图像。

8、对电动流求解(初始值设定为当前解和当前解(不同时间的解:全部),求解。)再将瞬

态时间设为:0:0.05:5,重复求解。在浓度场下观察上样图像。

9、在传导介质DC耦合场下选择边界模式:

相关数据:样液入口接地,缓冲液入口电位能设置为30V。设置求解器参数,把瞬态时间设置为:0:0.5:50。对传导介质求解(初始值设定为初始值表达式和当前解(全部)。求解)

10、对电动流求解,初始值都设为当前解(全部)。求解,在浓度场下观察样品分离图像。

篇二:电泳实验报告

实验十二电泳

一、目的要求

1)掌握电泳法测ζ电势的原理和技术;2)从实验现象中加深对胶体的电学性质的理解,即在外电场作用下,胶粒和介质分别向带相反电荷的电极移动,就产生了电泳和电渗的电动现象(因电而动)。

二、基本原理

1.电泳

由于胶粒带电,而溶胶是电中性的,则介质带与胶粒相反的电荷。在外电场作用下,胶粒和介质分别向带相反电荷的电极移动,就产生了电泳和电渗的电动现象。影响电泳的因素有:带电粒子的大小、形状;粒子表面电荷的数目;介质中电解质的种类、离子强度,pH值和粘度;电泳的温度和外加电压等。从电泳现象可以获得胶粒或大分子的结构、大小和形状等有关信息。

2.三种电势

,固体表面相对溶液的电势,?0=f(固体表面电荷密?0:热力学电势(或平衡电势)

度,电势决定离子浓度)。

:斯特恩电势。

离子是有一定大小的,而且离子与质点表面除了静电作用外,还有范德华吸引力。所以在靠近表面1-2个分子厚的区域内,反离子由于受到强烈的吸引,会牢固的结合在表面,形成一个紧密的吸附层,称为固定吸附层或斯特恩层;在斯特恩层中,除反离子外,还有一些溶剂分子同时被吸附。反离子的电性中心所形成的假想面,称为斯特恩面。在斯特恩面内,电势呈直线下降,由表面的?0直线下降到斯特恩面。称为斯特恩电势。

?:电动电势。

当固、液两相发生相对移动时,紧密层中吸附在固体表面的反离子和溶剂分子与质点作为一个整体一起运动,其滑动面在斯特恩面稍靠外一些。滑动面与溶液本体之间的电势差,称为 ?电势。?电势与电势在数值上相差甚小,但却具有不同的含义。应当指出,只有在固、液两相发生相对移动时,才能呈现出?电势。

?电势的大小,反映了胶粒带电的程度。?电势越高,表明胶粒带电越多,其滑动面与溶液本体之间的电势差越大,扩散层也越厚。当溶液中电解质浓度增加时,介质中反离子的浓度加大,将压缩扩散层使其变薄,把更多的反离子挤进滑动面以内,使?电势在数值上变小当电解质浓度足够大时,可使?电势为零。此时相应的状态,称为等电态。处于等电态的胶体质点不带电,因此不会发生电动现象,电泳、电渗速度也必然为零,这时的

溶胶非常容易聚沉。

3.电泳公式

当带电胶粒在外电场作用下迁移时,胶粒受到的静电力f1为:

f1?qE (1)

其中q为胶粒的电荷,E为电场强度(或称为电位梯度)

本次实验研究的Fe(OH)3为棒形胶粒。棒形胶粒在介质中运动受到的阻力f2按Stokes定律为:

f2?4r?(2)

其中r为胶粒的半径,?为电泳速度,?为介质的粘度,当胶粒运动速度即电泳

速度达到稳定时,f1 =f2,结合(1)、(2)式得到:

qE (3) 4r

根据静电学原理可知

q(4) ?r

其中r为胶粒的半径,?为介质的界电常数,

所以有

E (5) 4

4?(6) ?E

由该式可知,若已知?、?,可通过测定?和E算出?电势。该式只适合于

C·G·S单位制,且得出?电势的单位为静电伏特。若各物理量都采用SI单位,r的单位为m;?的单位为m·s-1 ;?的单位为Pa·s;E的单位为V·m-1此时

公式为:

三、仪器与试剂 49?109 伏特 (7) ?E

界面移动电泳仪;213型铂电极两个;高压数显稳压电源;滴管2根;烧杯(250mL);

-1玻璃棒一根;FeC13溶液(10%);KCl溶液(0.02 mol·L);

四、实验步骤1.仪器装置图如下。

图1. 实验装置图

2.溶胶的制备:

在不断搅拌的条件下、将FeC13稀溶液滴入沸腾的水中水解,即可生成棕红色、透明Fe(OH)3溶胶:

FeCl3+3H2

O Fe(OH)3↓+3HCl

部分氢氧化铁跟盐酸作用

Fe(OH)3+HCl=FeOCl+2H2O

FeOCl=FeO++Cl-

氢氧化铁吸附溶液中带正电荷的

离子(FeO+),胶团结构为:

{ [Fe (OH)3 ]m ? y Fe O+ , ( y-z ) Cl- }z+ ? z Cl-

分子团选择吸附离子紧密层扩散层

胶粒带正电荷,因此在电场作用下向阴极移动,出现电泳现象。

3.测定电泳速度和电位梯度

打开活塞,在电泳仪中装上待测Fe(OH)3溶胶至一定高度(便于观察界面的移动)。用滴管将KCl溶液从电泳仪两臂的玻璃管壁等量缓慢加入,出现清晰界

面才可以,否则重新灌装,继续加入KCl溶液至接近支管,注意不能扰动界面,保持界面清晰并使两臂界面等高。轻轻地将Pt电极垂直插入KCl溶液,记下两边界面的高度位置。接通电源,调节电压至180V左右,开始记时,观察液面的变化。

根据通电时间和界面下降的刻度计算电泳速度。

注意事项:

a: 氢氧化铁胶体的电泳速度跟氢氧化铁胶粒的带电量有关,胶粒带电量越大,电泳速度越大。渗析可以减少胶粒中的氯离子,增大胶粒的带电量。

b: 实验时,一旦通电,手就不能再触及电极,拆卸装置时也一定要先切断电源。

c: 要使氯化钾溶液浮在胶体的液面上,并跟胶体之间保持清晰的界面,实验时应注意使胶体的密度比使氯化钾溶液的密度大。这样,使氯化钾溶液加入后不会下沉而跟胶体混在一起。为此,氯化钾溶液的浓度不能太大。

五、数据记录与处理

从直流电源读得电压U= V,用直尺测得两电极间的距离l = m,计算E=U/l= -1-1V ·m;记录界面下降高度 m,通电时间 s,计算?=m·s

将E、?数据代入

据代入求出?。

m-1 ?(20℃,水)=80.37 F·4?,?为介质的界电常数,?为介质的粘度,初略地以水的数?E

?(20℃,水)=0.001Pa·s

篇三:实验35电渗

实验35 电渗

一、目的

①用电渗法测定SiO2对水的?电势

②观察电渗现象,了解电渗法实验技术概要。

二、基本原理

电渗是胶体常见的电动现象的一种。早在1809年,就观察到在电场作用下,水能通过多孔沙土或粘土隔膜的现象(图Ⅱ.97)。这种现象是胶体常见的电动现象的一种。多孔固体在与液体接触的界面处因吸附离子或本身电离而带电荷,分散介质则带相反的电荷。在外电场的作用下,介质将通过多孔固体隔膜贯穿隔膜的许多毛细管而定向移动,这就是电渗现象。电渗与电泳是互补效应。由于液体对多孔固体的相对运动,不发生在固体表面上,而发生在多孔固体表面的吸附层上。这种固体表面吸附层和与之相运动的液体介质间的电势差,叫做电动电势或?电势。因此,通过电渗可以测求电?势,从而进一步了解多孔周体表面吸附层的性质。

电渗的实验方法原则上是要设法使所要研究的分散相质点固

定在静电场中(通以直流电),让能导电的分散介质向某一方向流经刻度毛细管,从而测量出其流量(㎝3)、在测量出(或查出)相同温度下分散介质的特性常数和通过的电流后,即可算出?电势。设电渗发生在一个半径为r的毛细管中,又设固体与液体接触界面处的吸附层厚度为?(?比r 小许多,因此,双电层内液体的流动可不予考虑),若表面电荷密度为?加于长为l的毛细管两端的电势差为U电势梯度

U,则界面单位面积上所受的电力为 l

UF l为

当液体在毛细中流动时,界面单位面积上所受的阻力为

fdvv dx?

式中?-电渗速度

?-液体的黏度

当液体匀速流动时F?f,即

?Uv l?

U ( II .199) l?

假设界面处的电荷分布情况类似于一个处在介电常数为?的

液体中平板电容器上的电荷分布,其电容为

C?Q

S? 4π?

式中 Q-电荷量

S-面积

由此可得

Q? ( II .200) S4

将式( II .199)代入式( II .200)中,得

U ( II .201) 4l

若毛细管的截面积为A,单位时间内流过毛细管的液体量为V,则

V?AAU( II .202) 4l

l1lIl?I( II .202) AkAkA而U?IR?I?式中I-通过二电极间的电流

R-二电极间的电阻

k-液体介质的电导率。

将式( II .203)代入式( II .202),得4kVk I?

用式(II.204)计算?电势,可用实验方法测V、k和I值,而?、?值可从手册

中查得。式中所有电学量必须用绝对静电单位表示。采用我国法定计量单位时,若k单位为Ω-1·cm-1,I为A,液体流量V为cm3?s-1,?为Pa?s,?为V时,则式(II.204)应为

300240kVkV?3.6?106(II.205) I?I?

在上述推导过程中,忽略了毛细管壁的表面电导。事实上,毛细管壁的表面电

导不能忽略,所以应将k换成(k?ksS),其中S为毛细管壁的A

圆周长度,ks为毛细管壁单位圆周长度的表面电导率。但将式

〈II .204〉推广应用到粉末固体隔膜时,表面电导率校正项很难计算。通常

液体介质的电导率大于浓度为0.001mol·L-1的KCl溶液的电导率,且粉末固

体粒度在50μm以上时,表面电导率可以忽略不计。本实验中,由于纯水的电导率较低,故采用式(II.204)或式(II.205)计算时将引入一些误差。

三、仪器与试剂

电渗仪1台,停表1块,直流毫安表1块,高压直流电源(200~1000V)(也

可用B电池串联代替)1台。

石英粉(80?100目A.R.)。

四、操作步骤

1.安装电渗仪

电渗仪的结构如图II.98所示。

刻度毛细管D(可用1mL移液管改制)通过连通管C分别与铂丝电极它E、F相连(为使加于样品两端之电场均匀,最好用二铂片电极)。K为多孔薄瓷板,A管内

装粉末样品,在毛细管的一端接有另一根尖嘴形的毛细管G,G的上端装一段乳胶管H,乳胶管只可用一弹簧夹I夹紧。通过G管可将一个测量流速用的空气泡压

人毛细管D中。 2装入样品

将80 ~100目的SiO2粉与蒸馏水拌和的糊状物用滴管注入A管中,盖上瓶塞B。水份经K滤出,拔去钼电极E、F,从电极管口注入蒸馏水,至钼丝电极能浸入水中为止。检査不漏水后,插上铂电极。用吸耳球从G管压

入一小气泡至D的一端,夹紧螺夹I。将整个电渗仪浸入恒温槽(20、25、35℃)中,恒温10min以待测定。

3测定V、I和k值

在电渗仪的两钼丝电极间接上200~1000 V的直流电源,中间串一毫安表、耐

高压的电源开关K和换向开关如图II.99所示。调节电源电压,使电渗时,电

渗仪毛细管D中气泡从一端刻度至另—端刻度

行程时间约20 s左右。然后正确测定此时间,求出单位时间内毛细管中气泡所移动过的体积,此体积即为液体介质(水)在单位时间内通过A室的体积。利用

换向开关,可使E、F二电极的极性倒向,而使电渗方向倒向。由于电源电压较高,操作时应先切断电源开关,然后改换换向开关,再接上耐高压的电源开关,反复测量正、反向电渗时流量V值各5次,取平均值,求出液体流量V值。同时,在测量时调节电压,保持I值恒定。由毫安表读下I值。

改变电源电压,使D管中气泡行程时间改为15、25s。测定相应的流量V和电

流I 值。拆去电渗仪电源,用电导仪测定电渗仪中蒸馏水的电导率k值。注意:由于使用高压电源,操作时应注意安全。

五、数据处理①计算各次测定的值,并取平均值。②将的平均值和k代入式( II .204),计算SiO2对水的?电势。③测定时注意水的方向和2个钼电极的极性,从而确定?电势是正值还是负值。

六、思考题

①为什么毛细管D中气泡在单位时间内所移动过的体积就是单位时间内流过试

样室A的液体量?

②固体粉末样品颗粒太大,电渗测定结果重演性差,可能的原因是什么?

③讨论影响?电势测定的因素有哪些?

VlVl

文档

【精品文档】电渗的实验报告-范文word版 (10页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!==本文为word格式,下载后可方便编辑和修改!==电渗的实验报告篇一:电渗进样的Comsol模拟实验报告电渗进样的Comsol模拟实验报告班级:16110901姓名:刘莉丹学号201X22姓名:彭磊学号201X2307一、实验目的1、初步掌握ComsolMultiphysics的使用方法。2、学习电渗进样的Comsol模拟。二、实验原理COMSOLMultiphysics是一款大型的高级数值仿真软件
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top