
摘要
线性系统科学与技术是一门应用广泛的学科。面对各种各样的复杂系统,控制对象可以是确定性的或随机的,并且控制方法可以是常规控制或最优控制。控制理论与社会生产和科学技术的发展密切相关,并且在近代发展迅速。线性系统理论是现代控制理论中最基础,最成熟的分支,是控制科学的重要课程之一。
线性系统理论内容丰富,思想深刻,方法多样,富有美感。它不仅为线性控制系统的建模,分析和综合提供了完整的理论,而且还包含许多解决复杂问题的方法。这些方法简化了系统的建模,分析和综合,为系统控制理论的其他分支和其他学科提供了参考。它们是解决复杂问题的有效方法。
发展历程
线性系统理论的发展经历了两个阶段:经典线性系统理论和现代线性系统理论。
古典理论形成于1930年代和1940年代。奈奎斯特在1932年提出了反馈放大器的稳定性理论。波特在1940年代初提出了波特图。埃文斯在1948年提出了根轨迹理论。这表明了经典线性控制理论的形成。古典理论在第二次世界大战中的应用取得了巨大的成功。本文主要研究单输入单输出线性时不变系统。
1950年代后,随着航空技术的发展和控制理论的应用范围的扩大,经典线性控制理论的局限性日益明显。这种情况促进了线性系统的研究,从1960年以后的古典阶段到现代阶段。美国学者R.E.卡尔曼首先将状态空间方法应用于多元线性系统的研究,提出了可控性和可观测性两个基本概念,并提出了相应的标准。 1963年,例如吉尔伯特,他得到了揭示线性系统结构分解的重要结果,为现代线性系统理论的形成和发展做出了开创性的工作。 1965年后,现代线性系统理论又得到发展。有许多研究多元系统的理论和方法,例如线性系统的几何理论,线性系统的代数理论和多变量频域方法。随着计算机技术的发展,线性系统的计算方法和计算机辅助设计受到越来越多的关注。
主要特点
与经典线性控制理论相比,现代线性系统理论的主要特点如下:研究对象一般是多变量线性系统。除了输入变量和输出变量外,它还着重于描述系统内部状态的状态变量。在分析和综合方法上,时域方法是主要方法,而频域方法则是主要方法。除了古典理论外,还使用了更多的数学工具。除了拉普拉斯变换之外,现代线性系统理论还使用了许多线性代数,矩阵理论和微分方程理论。
