最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 科技 - 知识百科 - 正文

pandas groupby

来源:懂视网 责编:李赢赢 时间:2022-03-23 18:23:40
文档

pandas groupby

在Pandas中,社交领域将用户根据画像(性别、年龄)进行细分,研究用户的使用情况和偏好等主要运用groupby完成。在pandas中,实现分组操作的代码很简单,仅需一行代码:In[5]:group=data.groupby(company)。
推荐度:
导读在Pandas中,社交领域将用户根据画像(性别、年龄)进行细分,研究用户的使用情况和偏好等主要运用groupby完成。在pandas中,实现分组操作的代码很简单,仅需一行代码:In[5]:group=data.groupby(company)。

pandas中groupby用法详解是什么呢?不知道的小伙伴来看看小编今天的分享吧!

在Pandas中,社交领域将用户根据画像(性别、年龄)进行细分,研究用户的使用情况和偏好等主要运用groupby完成。

Groupby的基本原理:

在pandas中,实现分组操作的代码很简单,仅需一行代码,在这里,将上面的数据集按照company字段进行划分:

In [5]: group = data.groupby("company")

将上述代码输入ipython后,会得到一个DataFrameGroupBy对象

In [6]: group

Out[6]: <pandas.core.groupby.generic.DataFrameGroupBy object at 0x000002B7E2650240>

那这个生成的DataFrameGroupBy是啥呢?对data进行了groupby后发生了什么?ipython所返回的结果是其内存地址,并不利于直观地理解,为了看看group内部究竟是什么,这里把group转换成list的形式来看:

In [8]: list(group)

Out[8]:

[('A',   company  salary  age

  3       A      20   22

  6       A      23   33), 

 ('B',   company  salary  age

  4       B      10   17

  5       B      21   40

  8       B       8   30), 

 ('C',   company  salary  age

  0       C      43   35

  1       C      17   25

  2       C       8   30

  7       C      49   19)]

转换成列表的形式后,可以看到,列表由三个元组组成,每个元组中,第一个元素是组别(这里是按照company进行分组,所以最后分为了A,B,C),第二个元素的是对应组别下的DataFrame,整个过程可以图解如下:

总结来说,groupby的过程就是将原有的DataFrame按照groupby的字段(这里是company),划分为若干个分组DataFrame,被分为多少个组就有多少个分组DataFrame。所以说,在groupby之后的一系列操作(如agg、apply等),均是基于子DataFrame的操作。

以上就是小编今天的分享了,希望可以帮助到大家。

文档

pandas groupby

在Pandas中,社交领域将用户根据画像(性别、年龄)进行细分,研究用户的使用情况和偏好等主要运用groupby完成。在pandas中,实现分组操作的代码很简单,仅需一行代码:In[5]:group=data.groupby(company)。
推荐度:
标签: pandas groupby
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top