最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 科技 - 知识百科 - 正文

漫谈Clustering(2):k

来源:动视网 责编:小采 时间:2020-11-09 15:29:02
文档

漫谈Clustering(2):k

漫谈Clustering(2):k:原文:http://blog.pluskid.org/p=40 上一次我们了解了一个最基本的 clustering 办法 k-means ,这次要说的 k-medoids 算法,其实从名字上就可以看出来,和 k-means 肯定是非常相的。事实也确实如此,k-medoids 可以算是 k-means 的一个
推荐度:
导读漫谈Clustering(2):k:原文:http://blog.pluskid.org/p=40 上一次我们了解了一个最基本的 clustering 办法 k-means ,这次要说的 k-medoids 算法,其实从名字上就可以看出来,和 k-means 肯定是非常相的。事实也确实如此,k-medoids 可以算是 k-means 的一个


这里我们用 N-gram 来代替 word 。这样,我们从一个文档中可以得到一个 N-gram 的频率分布,按照频率排序一下,只保留频率最高的前 k 个(比如,300)N-gram,我们把叫做一个“Profile”。正常情况下,某一种语言(至少是西方国家的那些类英语的语言)写成的文档,不论主题或长短,通常得出来的 Profile 都差不多,亦即按照出现的频率排序所得到的各个 N-gram 的序号不会变化太大。这是非常好的一个性质:通常我们只要各个语言选取一篇(比较正常的,也不需要很长)文档构建出一个 Profile ,在拿到一篇未知文档的时候,只要和各个 Profile 比较一下,差异最小的那个 Profile 所对应的语言就可以认定是这篇未知文档的语言了——准确率很高,更可贵的是,所需要的训练数据非常少而且容易获得,训练出来的模型也是非常小的。

不过,我们这里且撇开分类(Classification)的问题,回到聚类(Clustering)上,按照前面的说法,在 k-medoids 聚类中,只需要定义好两个东西之间的距离(或者 dissimilarity )就可以了,对于两个 Profile ,它们之间的 dissimilarity 可以很自然地定义为对应的 N-gram 的序号之差的绝对值,在 Python 中用下面这样一个类来表示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class Profile(object):
 def __init__(self, path, N=3, psize=400):
 self.N = N
 self.psize = psize
 self.build_profile(path)
 
 sep = re.compile(r'\W+')
 def build_profile(self, path):
 grams = {}
 with open(path) as inf:
 for line in inf:
 for tok in self.sep.split(line):
 for n in range(self.N):
 self.feed_ngram(grams, tok, n+1)
 self.create_profile(grams.items())
 
 def create_profile(self, grams):
 # keep only the top most psize items
 grams.sort(key=itemgetter(1), reverse=True)
 grams = grams[:self.psize]
 
 self.profile = dict()
 for i in range(len(grams)):
 self.profile[grams[i][0]] = i
 
 def __getitem__(self, key):
 idx = self.profile.get(key)
 if idx is None:
 return len(self.profile)
 return idx
 
 def dissimilarity(self, o):
 dis = 0
 for tok in self.profile.keys():
 dis += abs(self[tok]-o[tok])
 for tok in o.profile.keys():
 dis += abs(self[tok]-o[tok])
 return dis
 
 def feed_ngram(self, grams, tok, n):
 if n != 0:
 tok = '_' + tok
 tok = tok + '_' * (n-1)
 for i in range(len(tok)-n+1):
 gram = tok[i:i+n]
 grams.setdefault(gram, 0)
 grams[gram] += 1

europarl 数据集共有 11 种语言的文档,每种语言包括大约 600 多个文档。我为这七千多个文档建立了 Profile 并构造出一个 7038×7038 的 dissimilarity matrix ,最后在这上面用 k-medoids 进行聚类。构造 dissimilarity matrix 的过程很慢,在我这里花了将近 10 个小时。相比之下,k-medoids 的过程在内存允许的情况下,采用向量化的方法来做实际上还是很快的,并且通常只要数次迭代就能收敛了。实际的 k-medoids 实现可以在 mltk 中找到,今后如果有时间的话,我会陆续地把一些相关的比较通用的代码放到那里面。

Hungarian algorithm 来求解。

我们这里有 11 种语言,全排列有 11! = 39916800 种情况, 对于每一种排列,我们需要遍历一次 label list ,并数出真正的 label (语言)与聚类得出的结果相同的文档的个数,再除以总的文档个数,得到 accuracy 。假设每次遍历并求出 accuracy 只需要 1 毫秒的时间的话,总共也需要 11 个小时才能得到结果。看上去好像也不是特别恐怖,不过相比起来,用 Hungarian algorithm 的话,我们可以几乎瞬间得到结果。由于文章的篇幅已经很长了,就不在这里介绍具体的算法了,感兴趣的同学可以参考 Wikipedia ,这里我直接使用了一个现有的 Python 实现。

虽然这个实验非常折腾,不过最后的结果其实就是一个数字:accuracy ——在我这里达到了 88.97% ,证明 k-medoids 聚类和 N-gram Profile 识别语言这两种方法都是挺不错的。最后,如果有感兴趣的同学,代码可以从这里下载。需要最新版的 scipy, munkres.py 和 mltk 以及 Python 2.6 。

文档

漫谈Clustering(2):k

漫谈Clustering(2):k:原文:http://blog.pluskid.org/p=40 上一次我们了解了一个最基本的 clustering 办法 k-means ,这次要说的 k-medoids 算法,其实从名字上就可以看出来,和 k-means 肯定是非常相的。事实也确实如此,k-medoids 可以算是 k-means 的一个
推荐度:
标签: http 原文 漫谈
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top