mysql> select * from A cross join B;+----+-----------+----+-------------+| id | name | id | name |+----+-----------+----+-------------+| 1 | Pirate | 1 | Rutabaga || 2 | Monkey | 1 | Rutabaga || 3 | Ninja | 1 | Rutabaga || 4 | Spaghetti | 1 | Rutabaga || 1 | Pirate | 2 | Pirate || 2 | Monkey | 2 | Pirate || 3 | Ninja | 2 | Pirate || 4 | Spaghetti | 2 | Pirate || 1 | Pirate | 3 | Darth Vader || 2 | Monkey | 3 | Darth Vader || 3 | Ninja | 3 | Darth Vader || 4 | Spaghetti | 3 | Darth Vader || 1 | Pirate | 4 | Ninja || 2 | Monkey | 4 | Ninja || 3 | Ninja | 4 | Ninja || 4 | Spaghetti | 4 | Ninja |+----+-----------+----+-------------+16 rows in set (0.00 sec)#再执行:mysql> select * from A inner join B; 试一试#在执行mysql> select * from A cross join B on A.name = B.name; 试一试更多内容源码搜藏http://www.codesocang.com
实际上,在 MySQL 中(仅限于 MySQL) CROSS JOIN 与 INNER JOIN 的表现是一样的,在不指定 ON 条件得到的结果都是笛卡尔积,反之取得两个表完全匹配的结果。 INNER JOIN 与 CROSS JOIN 可以省略 INNER 或 CROSS 关键字,因此下面的 SQL 效果是一样的:
... FROM table1 INNER JOIN table2... FROM table1 CROSS JOIN table2... FROM table1 JOIN table2
mysql> select * from A left join B on B.name = A.name -> union -> select * from A right join B on B.name = A.name;+------+-----------+------+-------------+| id | name | id | name |+------+-----------+------+-------------+| 1 | Pirate | 2 | Pirate || 2 | Monkey | NULL | NULL || 3 | Ninja | 4 | Ninja || 4 | Spaghetti | NULL | NULL || NULL | NULL | 1 | Rutabaga || NULL | NULL | 3 | Darth Vader |+------+-----------+------+-------------+6 rows in set (0.00 sec)
全连接产生的所有记录(双方匹配记录)在表A和表B。如果没有匹配,则对面将包含null。
如:
select * fromtable a inner join table bon a.id = b.id;
VS
select a.*, b.*from table a, table bwhere a.id = b.id;
我在数据库中比较(10w数据)得之,它们用时几乎相同,第一个是显示的inner join,后一个是隐式的inner join。
参照:Explicit vs implicit SQL joins
尽量用inner join.避免 LEFT JOIN 和 NULL.
在使用left join(或right join)时,应该清楚的知道以下几点:
ON 条件(“A LEFT JOIN B ON 条件表达式”中的ON)用来决定如何从 B 表中检索数据行。如果 B 表中没有任何一行数据匹配 ON 的条件,将会额外生成一行所有列为 NULL 的数据,在匹配阶段 WHERE 子句的条件都不会被使用。仅在匹配阶段完成以后,WHERE 子句条件才会被使用。它将从匹配阶段产生的数据中检索过滤。
所以我们要注意:在使用Left (right) join的时候,一定要在先给出尽可能多的匹配满足条件,减少Where的执行。如:
PASS
select * from Ainner join B on B.name = A.nameleft join C on C.name = B.nameleft join D on D.id = C.idwhere C.status>1 and D.status=1;
Great
select * from Ainner join B on B.name = A.nameleft join C on C.name = B.name and C.status>1left join D on D.id = C.id and D.status=1
从上面例子可以看出,尽可能满足ON的条件,而少用Where的条件。从执行性能来看第二个显然更加省时。
如作者举了一个列子:
mysql> SELECT * FROM product LEFT JOIN product_details ON (product.id = product_details.id) AND product_details.id=2;+----+--------+------+--------+-------+| id | amount | id | weight | exist |+----+--------+------+--------+-------+| 1 | 100 | NULL | NULL | NULL || 2 | 200 | 2 | 22 | 0 || 3 | 300 | NULL | NULL | NULL || 4 | 400 | NULL | NULL | NULL |+----+--------+------+--------+-------+4 rows in set (0.00 sec)mysql> SELECT * FROM product LEFT JOIN product_details ON (product.id = product_details.id) WHERE product_details.id=2;+----+--------+----+--------+-------+| id | amount | id | weight | exist |+----+--------+----+--------+-------+| 2 | 200 | 2 | 22 | 0 |+----+--------+----+--------+-------+1 row in set (0.01 sec)
从上可知,第一条查询使用 ON 条件决定了从 LEFT JOIN的 product_details表中检索符合的所有数据行。第二条查询做了简单的LEFT JOIN,然后使用 WHERE 子句从 LEFT JOIN的数据中过滤掉不符合条件的数据行。
往往性能这玩意儿,更多时候体现在数据量比较大的时候,此时,我们应该避免复杂的子查询。如下:
PASS
insert into t1(a1) select b1 from t2 where not exists(select 1 from t1 where t1.id = t2.r_id);
Great
insert into t1(a1) select b1 from t2 left join (select distinct t1.id from t1 ) t1 on t1.id = t2.r_id where t1.id is null;
这个可以参考mysql的exists与inner join 和 not exists与 left join 性能差别惊人
原文:http://www.codesocang.com/jiaocheng/mysql/8068.html