

这篇文章将收集unity中使用shader的相关技巧和特效,会不断地更新内容。关于在Unity中使用shader的介绍,请参考《【OpenGL】使用Unity来学习OpenGL》 常用的内置uniform iResolution =》_ScreenParams iGlobalTime = _Time.y glFragCoord = f loat4 sp:WPOS
这篇文章将收集unity中使用shader的相关技巧和特效,会不断地更新内容。关于在Unity中使用shader的介绍,请参考《【OpenGL】使用Unity来学习OpenGL》
常用的内置uniform
iResolution =》_ScreenParams
iGlobalTime => _Time.y
glFragCoord => float4 sp:WPOS // 需要 #pragma target 3.0, 另外的方式请见下面
vec2 => float2
mix => lerp
mod => fmod
texture2D => tex2D
textureCube => texCUBE
mat2=>float2x2
fract=>frac
========
关于glFragCoord, 可以使用另外一种方式计算(支持3.0之前的)参考官方例子
o.scrPos = ComputeScreenPos(o.pos);
float2 wcoord = (i.scrPos.xy/i.scrPos.w);
-------
float2 wcoord = sp.xy/_ScreenParams.xy;
关于数学的Shader:https://www.shadertoy.com/view/ldlSD2 https://www.shadertoy.com/view/ldlSWj
很好的一个教程:http://ogldev.atspace.co.uk/index.html
Deferred Shading 原理: http://ogldev.atspace.co.uk/www/tutorial35/tutorial35.html
关于Stencil Buffer 的理解:http://www.cnblogs.com/mikewolf2002/archive/2012/05/15/2500867.html
更多文章:1)http://docs.unity3d.com/Manual/SL-Stencil.html
2) http://answers.unity3d.com/questions/590800/how-to-cullrender-to-through-a-window.html
Stencil Shadow Volume : http://ogldev.atspace.co.uk/www/tutorial40/tutorial40.html
http://en.wikipedia.org/wiki/Shadow_volume
镜面反射的实现原理:
ftp://ftp.sgi.com/sgi/opengl/contrib/blythe/advanced99/notes/node158.html
其它镜面反射:
http://en.wikibooks.org/wiki/Cg_Programming/Unity/Mirrors
在unity cg中可以使用[HideInInspector]来隐藏uniform属性,这样就可以用作自定义常量。
Physically Based Rendering: Tutorial: Physically Based Rendering, And you can too!
边缘检测:1) http://www.codeproject.com/Articles/94817/Pixel-Shader-for-Edge-Detection-and-Cartoon-Effect
2) http://coding-experiments.blogspot.hk/2010/06/edge-detection.html
3) http://en.wikipedia.org/wiki/Edge_detection
Cg函数表:http://http.developer.nvidia.com/CgTutorial/cg_tutorial_appendix_e.html
heat effect : http://forum.unity3d.com/threads/50132-Heat-Distortion, http://www.cnblogs.com/geoffyange/archive/2013/06/06/3122570.html
skin shading in unity: http://www.altdevblogaday.com/2011/12/31/skin-shading-in-unity3d/
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch14.html
http://gamedev.stackexchange.com/questions/31308/algorithm-for-creating-spheres
RenderMan University: http://renderman.pixar.com/view/renderman-university
一些shader的例子:
Shader "stalendp/shaderTest02" { //see https://www.shadertoy.com/view/4sj3zy
Properties {
_MainTex ("Base (RGB)", 2D) = "white" {}
}
SubShader {
Pass {
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#pragma target 3.0
#include "UnityCG.cginc"
sampler2D _MainTex;
//Variable declarations
struct myvars {
float3 bgColor;
float sphereScale;
float sphereShine;
float3 sphereDiff;
float3 sphereSpec;
float2 specPoint;
};
float4 vert(appdata_base v) : POSITION {
return mul(UNITY_MATRIX_MVP, v.vertex);
}
float4 frag(float4 sp:WPOS): COLOR {
myvars mv;
mv.bgColor = float3(0.6, 0.5, 0.6);
mv.sphereScale = 0.7;
mv.sphereShine = 0.5;
mv.sphereDiff = float3(0.5, 0.0, 0.5);
mv.sphereSpec = float3(1.0, 1.0, 1.0);
mv.specPoint = float2(0.2, -0.1);
// creates shader pixel coordinates
float2 uv = sp.xy/_ScreenParams.xy;
// sets the position of the camera
float2 p = uv * 2.5 - float2(1.0, 1.0);
p.x *= _ScreenParams.x / _ScreenParams.y;
// Rotates the sphere in a circle
p.x += cos(-_Time.y) *0.35;
p.y += sin(-_Time.y) * 0.35;
// Rotates the specular point with the sphere
mv.specPoint.x += cos(-_Time.y) * 0.35;
mv.specPoint.y += sin(-_Time.y) * 0.35;
//Sets the radius of the sphere to the middle of the screen
float radius = length(p);//sqrt(dot(p, p));
float3 col = mv.bgColor;
//Sets the initial dark shadow around the edge of the sphere
float f = smoothstep(mv.sphereScale * 0.7, mv.sphereScale, length(p + mv.specPoint));
col -= lerp(col, float3(0.0,0.0,0.0), f) * 0.2;
//Only carries out the logic if the radius of the sphere is less than the scale
if(radius < mv.sphereScale) {
float3 bg = col;
//Sets the diffuse colour of the sphere (solid colour)
col = mv.sphereDiff;
//Adds smooth dark borders to help achieve 3D look
f = smoothstep(mv.sphereScale * 0.7, mv.sphereScale, radius);
col = lerp(col, mv.sphereDiff * 0.45, f);
//Adds specular glow to help achive 3D look
f = 1.0 - smoothstep(-0.2, 0.6, length(p - mv.specPoint));
col += f * mv.sphereShine * mv.sphereSpec;
//Smoothes the edge of the sphere
f = smoothstep(mv.sphereScale - 0.01, mv.sphereScale, radius);
col = lerp(col, bg, f);
}
//The final output of the shader logic above
//gl_FragColor is a vector with 4 paramaters(red, green, blue, alpha)
//Only 2 need to be used here, as "col" is a vector that already carries r, g, and b values
return float4(col, 1);
}
ENDCG
}
}
FallBack "Diffuse"
}
Shader "Custom/shaderTest03" { // https://www.shadertoy.com/view/Xdf3DS
Properties {
_MainTex ("Base (RGB)", 2D) = "white" {}
}
SubShader {
Pass {
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#pragma target 3.0
#include "UnityCG.cginc"
sampler2D _MainTex;
struct myvars {
float k;
float f;
float threshold;
float3 colour;
float3 normal;
float3 lightPos;
float3 lightColour;
float3 ambient;
float shinyness;
float diffuseFactor;
float4 fragCoord;
};
float2 center ( float2 border , float2 _offset , float2 vel, myvars mv) {
float2 c = _offset + vel * _Time * 0.5;
c = fmod ( c , 2. - 4. * border );
if ( c.x > 1. - border.x ) c.x = 2. - c.x - 2. * border.x;
if ( c.x < border.x ) c.x = 2. * border.x - c.x;
if ( c.y > 1. - border.y ) c.y = 2. - c.y - 2. * border.y;
if ( c.y < border.y ) c.y = 2. * border.y - c.y;
return c;
}
float field ( float b, float r , myvars mv) {
if ( r > b )
return 0.0;
if ( r >= b/3.0 ) {
float rb = 1.0 - r/b;
return (3.0*mv.k)/2.0 * rb * rb;
}
if ( r >= 0.0 && r <= b/3.0 ) {
return mv.k * ( 1.0 - ( (3.0*r*r)/(b*b) ) );
}
return 0.0;
}
void circle ( float r , float2 col , float2 _offset , float2 vel, myvars mv ) {
float2 pos = mv.fragCoord.xy / _ScreenParams.y;
float aspect = _ScreenParams.x / _ScreenParams.y;
float2 c = center ( float2 ( r / aspect , r ) , _offset , vel, mv);
c.x *= aspect;
float d = distance ( pos , c );
float thisField = field (r, d, mv);
mv.f += thisField;
mv.colour += float3(col, 0) * thisField;
mv.normal += normalize(float3(pos.x-c.x, pos.y-c.y,r))*thisField;
}
float4 vert(appdata_base v) : POSITION {
return mul(UNITY_MATRIX_MVP, v.vertex);
}
float4 frag(float4 sp:WPOS): COLOR {
myvars mv;
mv.fragCoord = sp;
mv.k = 100.0;
mv.f = 0.0;
mv.threshold = 10.0;
mv.colour = float3(0.0,0.0,0.0);
mv.normal = float3(0.0,0.0,0.0);
mv.lightPos = float3(_ScreenParams.xy,2000.0);
mv.lightColour = float3(0.9,0.9,1.0);
mv.ambient = float3(0.1,0.0,0.0);
mv.shinyness = 20.0;
mv.diffuseFactor = 0.0006;
circle ( .10 , float3 ( 0.7 , 0.2 , 0.8 ) , float2 ( .6 ) , float2 ( .30 , .70 ), mv );
circle ( .09 , float3 ( 0.7 , 0.9 , 0.6 ) , float2 ( .1 ) , float2 ( .02 , .20 ), mv );
circle ( .12 , float3 ( 0.3 , 0.4 , 0.1 ) , float2 ( .1 ) , float2 ( .10 , .04 ), mv );
circle ( .15 , float3 ( 0.2 , 0.5 , 0.1 ) , float2 ( .3 ) , float2 ( .10 , .20 ), mv );
circle ( .20 , float3 ( 0.1 , 0.3 , 0.7 ) , float2 ( .2 ) , float2 ( .40 , .25 ), mv );
circle ( .30 , float3 ( 0.9 , 0.4 , 0.2 ) , float2 ( .0 ) , float2 ( .15 , .20 ), mv );
float3 c;
if (mv.f < mv.threshold)
c = float3(0.0,0.0,0.0);
else {
mv.colour /= mv.f;
mv.normal = mv.normal/mv.f;
c = mv.ambient;
float3 lightDir = mv.lightPos - float3(sp.xy,0.0);
c += mv.colour * mv.diffuseFactor * max(dot(mv.normal,lightDir), 0.0);
float3 r = normalize ( reflect ( lightDir, mv.normal ) );
c += mv.lightColour * pow(max(dot(r,float3(0.0,0.0,-1.0)), 0.0), mv.shinyness);
}
return float4(c, 1);
}
ENDCG
}
}
}
Shader "stalendp/shaderTest04" { //see https://www.shadertoy.com/view/Xsf3R8
Properties {
_MainTex ("Base (RGB)", 2D) = "white" {}
}
SubShader {
Pass {
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#pragma target 3.0
#include "UnityCG.cginc"
sampler2D _MainTex;
struct Ray {
float3 org;
float3 dir;
};
float rayPlaneIntersect( Ray ray, float4 plane ) {
float f = dot( ray.dir, plane.xyz );
float t = -( dot( ray.org, plane.xyz ) + plane.w );
t /= f;
return t;
}
float3 shade( float3 pos, float3 nrm, float4 light ) {
float3 toLight = light.xyz - pos;
float toLightLen = length( toLight );
toLight = normalize( toLight );
float diff = dot( nrm, toLight );
float attn = 1.0 - pow( min( 1.0, toLightLen / light.w ), 2.0 );
float comb = 2.0 * diff * attn;
return float3( comb, comb, comb );
}
float4 vert(appdata_base v) : POSITION {
return mul(UNITY_MATRIX_MVP, v.vertex);
}
float4 frag(float4 sp:WPOS): COLOR {
// gl_FragCoord: location (0.5, 0.5) is returned
// for the lower-left-most pixel in a window
// XY of the normalized device coordinate
// ranged from [-1, 1]
float2 ndcXY = -1.0 + 2.0 * sp.xy / _ScreenParams.xy;
// aspect ratio
float aspectRatio = _ScreenParams.x / _ScreenParams.y;
// scaled XY which fits the aspect ratio
float2 scaledXY = ndcXY * float2( aspectRatio, 1.0 );
// camera XYZ in world space
float3 camWsXYZ = float3( 0.0, 1.0, 0.0 );
camWsXYZ.z += 10.0 * cos( _Time.y );
// construct the ray in world space
Ray ray;
ray.org = camWsXYZ;
ray.dir = float3( scaledXY, -2.0 ); // OpenGL is right handed
// define the plane in world space
float4 plane = float4( 0.0, 1.0, 0.0, 0.0 );
float t = rayPlaneIntersect( ray, plane );
// define the point light in world space (XYZ, range)
float4 lightWs = float4( 0.0, 5.0, -5.0, 10.0 );
if ( t >= 0.0 )
{
float3 sceneWsPos = ray.org + t * ray.dir;
float3 sceneWsNrm = plane.xyz;
float2 sceneUV = sceneWsPos.xz / 4.0;
float4 sceneBase = tex2D( _MainTex, sceneUV );
float3 sceneShade = shade( sceneWsPos, sceneWsNrm, lightWs );
return float4( sceneShade * sceneBase.xyz, 1.0 );
}
return float4( 0.0, 0.0, 0.0, 1.0 );
}
ENDCG
}
}
FallBack "Diffuse"
}
Shader "stalendp/shaderTest04" { //see https://www.shadertoy.com/view/MdB3Dw
Properties {
_MainTex ("Base (RGB)", 2D) = "white" {}
}
SubShader {
Pass {
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#pragma target 3.0
#include "UnityCG.cginc"
#define USE_ANALYTICAL_MBLUR
sampler2D _MainTex;
// intersect a MOVING sphere
float2 iSphere( in float3 ro, in float3 rd, in float4 sp, in float3 ve, out float3 nor )
{
float t = -1.0;
float s = 0.0;
nor = float3(0.0);
float3 rc = ro - sp.xyz;
float A = dot(rc,rd);
float B = dot(rc,rc) - sp.w*sp.w;
float C = dot(ve,ve);
float D = dot(rc,ve);
float E = dot(rd,ve);
float aab = A*A - B;
float eec = E*E - C;
float aed = A*E - D;
float k = aed*aed - eec*aab;
if( k>0.0 )
{
k = sqrt(k);
float hb = (aed - k)/eec;
float ha = (aed + k)/eec;
float ta = max( 0.0, ha );
float tb = min( 1.0, hb );
if( ta < tb )
{
ta = 0.5*(ta+tb);
t = -(A-E*ta) - sqrt( (A-E*ta)*(A-E*ta) - (B+C*ta*ta-2.0*D*ta) );
nor = normalize( (ro+rd*t) - (sp.xyz+ta*ve ) );
s = 2.0*(tb - ta);
}
}
return float2(t,s);
}
// intersect a STATIC sphere
float iSphere( in float3 ro, in float3 rd, in float4 sp, out float3 nor )
{
float t = -1.0;
nor = float3(0.0);
float3 rc = ro - sp.xyz;
float b = dot(rc,rd);
float c = dot(rc,rc) - sp.w*sp.w;
float k = b*b - c;
if( k>0.0 )
{
t = -b - sqrt(k);
nor = normalize( (ro+rd*t) - sp.xyz );
}
return t;
}
float3 getPosition( float time ) { return float3( 2.5*sin(8.0*time), 0.0, 1.0*cos(8.0*time) ); }
float3 getVelocity( float time ) { return float3( 8.0*2.5*cos(8.0*time), 0.0, -8.0*1.0*sin(8.0*time) ); }
float4 vert(appdata_base v) : POSITION {
return mul(UNITY_MATRIX_MVP, v.vertex);
}
float4 frag(float4 sp:WPOS): COLOR {
float2 q = sp.xy / _ScreenParams.xy;
float2 p = -1.0 + 2.0*q;
p.x *= _ScreenParams.x/_ScreenParams.y;
// camera
float3 ro = float3(0.0,0.0,4.0);
float3 rd = normalize( float3(p.xy,-2.0) );
// sphere
// render
float3 col = float3(0.0);
#ifdef USE_ANALYTICAL_MBLUR
//---------------------------------------------------
// render with analytical motion blur
//---------------------------------------------------
float3 ce = getPosition( _Time.y );
float3 ve = getVelocity( _Time.y );
col = float3(0.25) + 0.3*rd.y;
float3 nor = float3(0.0);
float3 tot = float3(0.25) + 0.3*rd.y;
float2 res = iSphere( ro, rd, float4(ce,1.0), ve/24.0, nor );
float t = res.x;
if( t>0.0 )
{
float dif = clamp( dot(nor,float3(0.5703)), 0.0, 1.0 );
float amb = 0.5 + 0.5*nor.y;
float3 lcol = dif*float3(1.0,0.9,0.3) + amb*float3(0.1,0.2,0.3);
col = lerp( tot, lcol, res.y );
}
#else
//---------------------------------------------------
// render with brute force sampled motion blur
//---------------------------------------------------
#define NUMSAMPLES 32
float3 tot = float3(0.0);
for( int i=0; i0.0 )
{
float dif = clamp( dot(nor,float3(0.5703)), 0.0, 1.0 );
float amb = 0.5 + 0.5*nor.y;
tmp = dif*float3(1.0,0.9,0.3) + amb*float3(0.1,0.2,0.3);
}
col += tmp;
}
col /= float(NUMSAMPLES);
#endif
col = pow( clamp(col,0.0,1.0), float3(0.45) );
return float4( col, 1.0 );
}
ENDCG
}
}
FallBack "Diffuse"
}
Shader "stalendp/shaderTest05" { //see https://www.shadertoy.com/view/XsB3DW
Properties {
_MainTex ("Base (RGB)", 2D) = "white" {}
_CubeDiffuse ("Cubemap Diffuse Map", CUBE) = "" {}
vv1("vv1", float) = -1.0
vv2("vv2", float) = 2.0
}
SubShader {
Pass {
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#pragma target 3.0
//下面防止编译错误:instruction limit of 1024 exceed;
#pragma glsl
#include "UnityCG.cginc"
#define MAX_STEPS 64
#define MAX_REFLECTIONS 4
#define PI 3.1415926536
sampler2D _MainTex;
samplerCUBE _CubeDiffuse;
float vv1, vv2;
struct Ray {
float3 o;
float3 d;
};
struct Sphere {
float3 o;
float r;
};
struct Box {
float3 o;
float3 s;
};
struct Torus {
float3 o;
float2 s;
};
float2 rotate2d(in float2 v, in float a) {
float sinA = sin(a);
float cosA = cos(a);
return float2(v.x * cosA - v.y * sinA, v.y * cosA + v.x * sinA);
}
float sdSphere(in float3 p, in Sphere s) {
return length(p-s.o)-s.r;
}
float sdBox(in float3 p, in Box b) {
float3 d = abs(p-b.o) - b.s;
return min(max(d.x,max(d.y,d.z)),0.0) +
length(max(d,0.0));
}
float sdTorus(in float3 p, in Torus t) {
p -= t.o;
float2 q = float2(length(p.xz)-t.s.x,p.y);
return length(q)-t.s.y;
}
float world(in float3 p) {
float ti = fmod(_Time.y,10.);
if(ti > 2.) {
Sphere s0 = Sphere(float3(0),1.);
Box b0 = Box(float3(0),float3(.8));
if(ti < 4.) {
return max(-sdSphere(p,s0),sdBox(p,b0));
} else if(ti < 6.) {
return min(sdSphere(p,s0),sdBox(p,b0));
} else if(ti < 8.) {
return max(sdSphere(p,s0),sdBox(p,b0));
} else {
return max(sdSphere(p,s0),-sdBox(p,b0));
}
} else {
float3 pr = p.xzy;
return sdTorus(pr, Torus(float3(0),float2(1.,.5)));
}
}
float3 getNormal(in float3 p) {
float3 d = float3(.005,0,0);
float3 n;
n.x = world(p+d.xyy);
n.y = world(p+d.yxy);
n.z = world(p+d.yyx);
return normalize(n);
}
bool march(in Ray r, out float3 p) {
p = r.o;
float d;
for(int i = 0; i < MAX_STEPS; i++) {
d = world(p);
p += r.d*d;
}
return d<=0.01;
}
float3 colorMarch(in Ray r) {
float3 p;
float3 col = float3(0);
for(int i = 0; i < MAX_REFLECTIONS; i++) {
if(march(r,p)) {
float3 ldir = normalize(float3(1,-1,.5));
float3 n = getNormal(p);
col += float3(dot(n,-ldir))*.25;
r = Ray(p,reflect(r.d,n));
r.o += r.d*0.2;
} else {
break;
}
}
col += texCUBE(_CubeDiffuse, r.d).rgb;
return col;
}
float4 vert(appdata_base v) : POSITION {
return mul(UNITY_MATRIX_MVP, v.vertex);
}
float4 frag(float4 sp:WPOS): COLOR {
float2 uv = 2.*sp.xy/_ScreenParams.xy-1.;
uv.x *= _ScreenParams.x/_ScreenParams.y;
Ray r = Ray(float3(0,0,-2),normalize(float3(uv,1)));
r.o.xz = rotate2d(r.o.xz,_Time.y*.5);
r.d.xz = rotate2d(r.d.xz,_Time.y*.5);
float3 cc =colorMarch(r);
return float4( cc, 1.0 );
}
ENDCG
}
}
FallBack "Diffuse"
}
CGINCLUDE的使用
