最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 科技 - 知识百科 - 正文

[RTT例程练习]2.6互斥锁mutex

来源:动视网 责编:小采 时间:2020-11-09 08:03:42
文档

[RTT例程练习]2.6互斥锁mutex

[RTT例程练习]2.6互斥锁mutex:互斥锁是一种保护共享资源的方法。当一个线程拥有互斥锁的时候,另一个线程若是等待锁,则其就会被挂起,从而保证只有一个线程会操作共享数据。 这里的例子同样有静态锁和动态锁,其差别同之前一样,仅仅是创建和删除的方式不同。 例子中,线程2 一开始拥有
推荐度:
导读[RTT例程练习]2.6互斥锁mutex:互斥锁是一种保护共享资源的方法。当一个线程拥有互斥锁的时候,另一个线程若是等待锁,则其就会被挂起,从而保证只有一个线程会操作共享数据。 这里的例子同样有静态锁和动态锁,其差别同之前一样,仅仅是创建和删除的方式不同。 例子中,线程2 一开始拥有

互斥锁是一种保护共享资源的方法。当一个线程拥有互斥锁的时候,另一个线程若是等待锁,则其就会被挂起,从而保证只有一个线程会操作共享数据。 这里的例子同样有静态锁和动态锁,其差别同之前一样,仅仅是创建和删除的方式不同。 例子中,线程2 一开始拥有

互斥锁是一种保护共享资源的方法。当一个线程拥有互斥锁的时候,另一个线程若是等待锁,则其就会被挂起,从而保证只有一个线程会操作共享数据。

这里的例子同样有静态锁和动态锁,其差别同之前一样,仅仅是创建和删除的方式不同。

例子中,线程2 一开始拥有锁,因为线程2的优先级高。而后线程1一开始采用等待10个tick的方式,所以线程1等锁的时候一定会超时。最后线程2 等1秒之后释放锁,然后这时线程1再次试图拥有锁,就能成功拿到锁了。

代码:

#include 

void rt_init_thread_entry(void *parameter)
{

}

static struct rt_mutex static_mutex;

static rt_mutex_t dynamic_mutex = RT_NULL;

static rt_uint8_t thread1_stack[1024];
struct rt_thread thread1;
static void rt_thread_entry1(void *parameter)
{
 rt_err_t result;
 rt_tick_t tick;
 
 /* static mutex demo */
 rt_kprintf("thread1 try to get static mutex, wait 10 ticks.\n");
 
 tick = rt_tick_get();
 
 result = rt_mutex_take(&static_mutex, 10);
 if (result == -RT_ETIMEOUT)
 {
 if (rt_tick_get() - tick != 10)
 {
 rt_mutex_detach(&static_mutex);
 return ;
 }
 }
 else
 {
 rt_kprintf("thread1 take a static mutex, failed.\n");
 rt_mutex_detach(&static_mutex);
 return ;
 }
 
 /* wait forever */
 rt_kprintf("thread1 try to get static mutex, wait forever.\n");
 result = rt_mutex_take(&static_mutex, RT_WAITING_FOREVER);
 if (result != RT_EOK)
 {
 rt_kprintf("thread1 take a static mutex, failed.\n");
 rt_mutex_detach(&static_mutex);
 return ;
 }
 
 rt_kprintf("thread1 take a static mutex, done.\n");
 
 rt_mutex_detach(&static_mutex);
 
 /* dynamic mutex test */
 rt_kprintf("thread1 try to get dynamic mutex, wait 10 ticks.\n");
 
 tick = rt_tick_get();
 
 result = rt_mutex_take(dynamic_mutex, 10);
 if (result == -RT_ETIMEOUT)
 {
 if (rt_tick_get() - tick != 10)
 {
 rt_mutex_delete(dynamic_mutex);
 return ;
 }
 rt_kprintf("thread1 take dynamic mutex timeout.\n");
 }
 else
 {
 rt_kprintf("thread1 take a dynamic mutex, failed.\n");
 rt_mutex_delete(dynamic_mutex);
 return ;
 }
 
 rt_kprintf("thread1 try to take dynamic mutex, wait forever.\n");
 result = rt_mutex_take(dynamic_mutex, RT_WAITING_FOREVER);
 if (result != RT_EOK)
 {
 rt_kprintf("thread1 take a dynamic mutex, failed.\n");
 rt_mutex_delete(dynamic_mutex);
 return ;
 }
 
 rt_kprintf("thread1 take a dynamic mutex,done.\n");
 rt_mutex_delete(dynamic_mutex);
}

static rt_uint8_t thread2_stack[1024];
struct rt_thread thread2;
static void rt_thread_entry2(void *parameter)\
{
 //rt_err_t result;
 //rt_tick_t tick;
 
 rt_kprintf("thread2 try to take static mutex.\n");
 rt_mutex_take(&static_mutex, 10);
 rt_kprintf("thread2 got static mutex.\n");
 rt_thread_delay(RT_TICK_PER_SECOND);
 rt_kprintf("thread2 release static mutex.\n");
 rt_mutex_release(&static_mutex);
 
 rt_kprintf("thread2 try to take dynamic mutex.\n");
 rt_mutex_take(dynamic_mutex, 10);
 rt_kprintf("thread2 got dynamic mutex.\n");
 rt_thread_delay(RT_TICK_PER_SECOND);
 rt_kprintf("thread2 release dynamic mutex.\n");
 rt_mutex_release(dynamic_mutex);
}

int rt_application_init()
{
 //rt_thread_t init_thread;
 rt_err_t result;
 
 result = rt_mutex_init(&static_mutex, "smutex", RT_IPC_FLAG_FIFO);
 if (result != RT_EOK)
 {
 rt_kprintf("init static mutex failed.\n");
 return -1;
 }
 dynamic_mutex = rt_mutex_create("dmutex", RT_IPC_FLAG_FIFO);
 if (dynamic_mutex == RT_NULL)
 {
 rt_kprintf("create dynamic mutex failed.\n");
 return -1;
 }

 rt_thread_init(&thread1,
 "thread1",
 rt_thread_entry1,
 RT_NULL,
 &thread1_stack[0],
 sizeof(thread1_stack),11,5);
 rt_thread_startup(&thread1);


 rt_thread_init(&thread2,
 "thread2",
 rt_thread_entry2,
 RT_NULL,
 &thread2_stack[0],
 sizeof(thread2_stack),10,5);
 rt_thread_startup(&thread2);
 return 0;
}

结果:
thread2 try to get static mutex
thread2 got static mutex
thread1 try to get static mutex, wait 10 ticks.
thread1 take static mutex timeout
thread1 try to get static mutex, wait forever.
thread2 release static mutex
thread2 try to get dynamic mutex
thread2 got dynamic mutex
thread1 take a staic mutex, done.
thread1 try to get dynamic mutex, wait 10 ticks.
thread1 take dynamic mutex timeout
thread1 try to get dynamic mutex, wait forever.
thread2 release dynamic mutex
thread1 take a dynamic mutex, done.

文档

[RTT例程练习]2.6互斥锁mutex

[RTT例程练习]2.6互斥锁mutex:互斥锁是一种保护共享资源的方法。当一个线程拥有互斥锁的时候,另一个线程若是等待锁,则其就会被挂起,从而保证只有一个线程会操作共享数据。 这里的例子同样有静态锁和动态锁,其差别同之前一样,仅仅是创建和删除的方式不同。 例子中,线程2 一开始拥有
推荐度:
标签: 一种 互斥 练习
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top