最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 科技 - 知识百科 - 正文

courseraMachineLearningex2

来源:动视网 责编:小采 时间:2020-11-09 07:28:01
文档

courseraMachineLearningex2

courseraMachineLearningex2:这次的作业为Logistic Regression的具体实现。 1 Logistic Regression 1.2 Implementatiion 1.2.1 Warm up 既然都说是热身了,那么也就一扫而过吧。在sigmoid.m中添加如下代码: g = 1./(1 + e.^-z); 这段代码就是sigmoid函数的
推荐度:
导读courseraMachineLearningex2:这次的作业为Logistic Regression的具体实现。 1 Logistic Regression 1.2 Implementatiion 1.2.1 Warm up 既然都说是热身了,那么也就一扫而过吧。在sigmoid.m中添加如下代码: g = 1./(1 + e.^-z); 这段代码就是sigmoid函数的


这次的作业为Logistic Regression的具体实现。 1 Logistic Regression 1.2 Implementatiion 1.2.1 Warm up 既然都说是热身了,那么也就一扫而过吧。在sigmoid.m中添加如下代码: g = 1./(1 + e.^-z); 这段代码就是sigmoid函数的具体实现,对矩阵同样适用。 1

这次的作业为Logistic Regression的具体实现。

1 Logistic Regression

1.2 Implementatiion

1.2.1 Warm up

既然都说是热身了,那么也就一扫而过吧。在sigmoid.m中添加如下代码:

g = 1./(1 + e.^-z);

这段代码就是sigmoid函数的具体实现,对矩阵同样适用。


1.2.2 Cost Function and gradient

和ex1类似,接下里就是实现代价函数和梯度下降的公式,只要注意好矩阵的操作即可,在costfunction.m中添加如下代码:

Hx = sigmoid(X * theta);
J = 1/m * (-y'*log(Hx)-(1-y')*log(1-Hx));
grad = 1/m * ((Hx - y)' * X);

1.2.3 Learning paramters using fminunc

并无需要我们自己写的代码,只是讲解了一下如何使用octave自带的fminunc来找到使得代价函数J最小的参数θ,给出的具体代码如下:

% Set options for fminunc
options = optimset('GradObj', 'on', 'MaxIter', 400);

% Run fminunc to obtain the optimal theta
% This function will return theta and the cost 
[theta, cost] = ...
	fminunc(@(t)(costFunction(t, X, y)), initial_theta, options);
稍微解释一下这段代码,第一句话是在设置fminunc的一些参数,把'GradObj'这个参数设置为on,这样就告诉了fminunc函数要同时返回具体的代价函数的值和梯度,也让fminunc函数在寻找最小化参数的时候可以使用梯度;后面把'MaxIter'参数设置为400,这样fminunc函数最多迭代400次。第二句话就是在具体调用fminunc函数,@(t)可以认为是将我们的代价函数作为一个参数传递了进去,t在代价函数中的位置就是theta的位置。

最后fminunc函数返回的参数构成的直线分割的效果如下:



1.2.4 Evaluating logistic regression

可以看到我们已经完成了找到那条最好的划分曲线,那么我们将如何来评价我们找到的这条曲线的好坏呢?一种方法就是用这条曲线来对所有训练集中的元组进行判断,统计其正确率,于是我们在predict.m中添加如下代码:

Hx = sigmoid(X * theta);
for iter = 1:m
	if Hx(iter) >= 0.5
	p(iter) = 1;
	else
	p(iter) = 0;
	end;
end;
这里是一个简单的循环,把结果根据阀值0.5进行二值化。


2 Regularized logistic regression

如果我们在碰到这种问题的分类的时候,只有2个参数只能用直线进行划分的话显然不好,我们就不得不增加参数,比如x1*x2以及x1^2等,增加参数虽然能够更好的划分训练集,但是也会带来过度匹配(overfitting)的问题,下面的练习就会解决这个问题。

按照之前在正规化中的介绍,将会在代价函数中添加参数本身大小的影响,从而使得参数的大小都比较接近0,修改过的公式在视频和pgf都已列出,我们需要做的就是用Matlab语言实现之。代码如下(costFunctionReg.m):

Hx = sigmoid(X * theta);
J = 1/m * (-y'*log(Hx)-(1-y')*log(1-Hx)) + lambda/(2*m) * (theta(2:end)' * theta(2:end));

grad = 1/m * ((Hx - y)' * X) + lambda/m * theta'; 
grad(1) = grad(1) - lambda/m * theta(1);

最后的效果如下:

文档

courseraMachineLearningex2

courseraMachineLearningex2:这次的作业为Logistic Regression的具体实现。 1 Logistic Regression 1.2 Implementatiion 1.2.1 Warm up 既然都说是热身了,那么也就一扫而过吧。在sigmoid.m中添加如下代码: g = 1./(1 + e.^-z); 这段代码就是sigmoid函数的
推荐度:
标签: ex 机器学习 machine
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top