最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 科技 - 知识百科 - 正文

AddingFilterinHadoopMapperClass

来源:动视网 责编:小采 时间:2020-11-09 13:22:56
文档

AddingFilterinHadoopMapperClass

AddingFilterinHadoopMapperClass:There is my solutions to tackle the disk spaces shortage problem I described in the previous post. The core principle of the solution is to reduce the number of output records at Mapper stage; the method I used is Filter , adding a filter,
推荐度:
导读AddingFilterinHadoopMapperClass:There is my solutions to tackle the disk spaces shortage problem I described in the previous post. The core principle of the solution is to reduce the number of output records at Mapper stage; the method I used is Filter , adding a filter,


There is my solutions to tackle the disk spaces shortage problem I described in the previous post. The core principle of the solution is to reduce the number of output records at Mapper stage; the method I used is Filter , adding a filter,

There is my solutions to tackle the disk spaces shortage problem I described in the previous post. The core principle of the solution is to reduce the number of output records at Mapper stage; the method I used is Filter, adding a filter, which I will explain later, to decrease the output records of Mapper, which in turn significantly decrease the Mapper’s Spill records, and fundamentally decrease the disk space usages. After applying the filter, with 30,661 records. some 200MB data set as inputs, the total Spill Records is 25,471,725, and it only takes about 509MB disk spaces!

Followed Filter

And now I’m going to reveal what’s kinda Filter it looks like, and how did I accomplish that filter. The true face of the FILTER is called Followed Filter, it filters users from computing co-followed combinations if their followed number does not satisfy a certain number, called Followed Threshold.

Followed Filter is used to reduce the co-followed combinations at Mapper stage. Say we set the followed threshold to 100, meaning users who doesn’t own 100 fans(be followed by 100 other users) will be ignored during co-followed combinations computing stage(to get the actual number of the threshold we need analyze statistics of user’s followed number of our data set).

Reason

Choosing followed filter is reasonable because how many user follows is a metric of user’s popularity/famousness.

HOW

In order to accomplish it, we need:

First, counting user’s followed number among our data set, which needs a new MapReduce Job;

Second, choosing a followed threshold after analyze the statistics perspective of followed number data set got in first step;

Third, using DistrbutedCache of Hadoop to cache users who satisfy the filter to all Mappers;

Forth, adding followed filter to Mapper class, only users satisfy filter condition will be passed into co-followed combination computing phrase;

Fifth, adding co-followed filter/threshold in Reducer side if necessary.

Outcomes

Here is the Hadoop Job Summary, after applying the followed filter with followed threshold of 1000, that means only users who are followed by 1000 users will have the opportunity to co-followed combinations, compared with the Job Summary in my previous post, most all metrics have significant improvements:

Counter Map Reduce Total
Bytes Written 0 1,798,185 1,798,185
Bytes Read 203,401,876 0 203,401,876
FILE_BYTES_READ 405,219,906 52,107,486 457,327,392
HDFS_BYTES_READ 203,402,751 0 203,402,751
FILE_BYTES_WRITTEN 457,707,759 52,161,704 509,869,463
HDFS_BYTES_WRITTEN 0 1,798,185 1,798,185
Reduce input groups 0 373,680 373,680
Map output materialized bytes 52,107,522 0 52,107,522
Combine output records 22,202,756 0 22,202,756
Map input records 30,661 0 30,661
Reduce shuffle bytes 0 52,107,522 52,107,522
Physical memory (bytes) snapshot 2,646,589,440 116,408,320 2,762,997,760
Reduce output records 0 373,680 373,680
Spilled Records 22,866,351 2,605,374 25,471,725
Map output bytes 2,115,139,050 0 2,115,139,050
Total committed heap usage (bytes) 2,813,853,696 84,738,048 2,898,591,744
CPU time spent (ms) 5,766,680 11,210 5,777,890
Virtual memory (bytes) snapshot 9,600,737,280 1,375,002,624 10,975,739,904
SPLIT_RAW_BYTES 875 0 875
Map output records 117,507,725 0 117,507,725
Combine input records 137,105,107 0 137,105,107
Reduce input records 0 2,605,374 2,605,374

P.S.

Frankly Speaking, chances are I am on the wrong way to Hadoop Programming, since I’m palying Pesudo Distribution Hadoop with my personal computer, which has 4 CUPs and 4G RAM, in real Hadoop Cluster disk spaces might never be a trouble, and all the tuning work I have done may turn into meaningless efforts. Before the Followed Filter, I also did some Hadoop tuning like customed Writable class, RawComparator, block size and io.sort.mb, etc.

---EOF---

文档

AddingFilterinHadoopMapperClass

AddingFilterinHadoopMapperClass:There is my solutions to tackle the disk spaces shortage problem I described in the previous post. The core principle of the solution is to reduce the number of output records at Mapper stage; the method I used is Filter , adding a filter,
推荐度:
标签: in cl filter
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top