最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 科技 - 知识百科 - 正文

NumpyAPIAnalysis

来源:动视网 责编:小采 时间:2020-11-27 14:23:44
文档

NumpyAPIAnalysis

NumpyAPIAnalysis:histogram >>> a = numpy.arange(5) >>> hist, bin_edges = numpy.histogram(a,density=False) >>> hist, bin_edges (array([1, 0, 1, 0, 0, 1, 0, 1, 0, 1
推荐度:
导读NumpyAPIAnalysis:histogram >>> a = numpy.arange(5) >>> hist, bin_edges = numpy.histogram(a,density=False) >>> hist, bin_edges (array([1, 0, 1, 0, 0, 1, 0, 1, 0, 1


histogram

?

>>> a = numpy.arange(5)

>>> hist, bin_edges = numpy.histogram(a,density=False)

>>> hist, bin_edges

(array([1, 0, 1, 0, 0, 1, 0, 1, 0, 1], dtype=int), array([ 0. , 0.4, 0.8, 1.2, 1.6, 2. , 2.4, 2.8, 3.2, 3.6, 4. ]))

?

Analysis:

  • Variable a is [0 1 2 3 4]
  • After call histogram, it will calculate the total count each number in a= [0 1 2 3 4] according to each bins(阈值), for example:
  • bins

    Contains number

    result

    [0.-0.4)

    0

    1

    [0.4-0.8)

    N/A

    0

    [0.8-1.2)

    1

    1

    [1.2-1.6)

    N/A

    0

    [1.6-2.)

    N/A

    0

    [2.-2.4)

    2

    1

    [2.4-2.8)

    N/A

    0

    [2.8-3.2)

    3

    1

    [3.2-3.6)

    N/A

    0

    [3.6-4.]

    4

    1


    [0.-0.4) contains 0, so result is 1

    [0.4-0.8) does not contain any number in [0 1 2 3 4], so result is 0
    [0.8-1.2) contains 1, so result is 1
    [1.2-1.6) does not contain any number in [0 1 2 3 4], so result is 0
    [1.6-2.) does not contain any number in [0 1 2 3 4], so result is 0

    [2.-2.4) contains 2, so result is 1

    [2.4-2.8) does not contain any number in [0 1 2 3 4], so result is 0

    [2.8-3.2) contains 3, so result is 1

    [3.2-3.6) does not contain any number in [0 1 2 3 4], so result is 0

    [3.6-4.] contains 4, so result is 1

    ?

    文档

    NumpyAPIAnalysis

    NumpyAPIAnalysis:histogram >>> a = numpy.arange(5) >>> hist, bin_edges = numpy.histogram(a,density=False) >>> hist, bin_edges (array([1, 0, 1, 0, 0, 1, 0, 1, 0, 1
    推荐度:
    标签: API numpy analysis
    • 热门焦点

    最新推荐

    猜你喜欢

    热门推荐

    专题
    Top