最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 科技 - 知识百科 - 正文

必看的的30个Python语言的特点技巧(3)

来源:动视网 责编:小采 时间:2020-11-27 14:25:26
文档

必看的的30个Python语言的特点技巧(3)

必看的的30个Python语言的特点技巧(3):从我开始学习Python时我就决定维护一个经常使用的窍门列表。不论何时当我看到一段让我觉得酷,这样也行!的代码时(在一个例子中、在StackOverflow、在开源码软件中,等等),我会尝试它直到理解它,然后把它添加到列表中。这篇文章是清理过列表的一
推荐度:
导读必看的的30个Python语言的特点技巧(3):从我开始学习Python时我就决定维护一个经常使用的窍门列表。不论何时当我看到一段让我觉得酷,这样也行!的代码时(在一个例子中、在StackOverflow、在开源码软件中,等等),我会尝试它直到理解它,然后把它添加到列表中。这篇文章是清理过列表的一


从我开始学习Python时我就决定维护一个经常使用的“窍门”列表。不论何时当我看到一段让我觉得“酷,这样也行!”的代码时(在一个例子中、在StackOverflow、在开源码软件中,等等),我会尝试它直到理解它,然后把它添加到列表中。这篇文章是清理过列表的一部分。如果你是一个有经验的Python程序员,尽管你可能已经知道一些,但你仍能发现一些你不知道的。如果你是一个正在学习Python的C、C++或Java程序员,或者刚开始学习编程,那么你会像我一样发现它们中的很多非常有用。

每个窍门或语言特性只能通过实例来验证,无需过多解释。虽然我已尽力使例子清晰,但它们中的一些仍会看起来有些复杂,这取决于你的熟悉程度。所以如果看过例子后还不清楚的话,标题能够提供足够的信息让你通过Google获取详细的内容。

列表按难度排序,常用的语言特征和技巧放在前面。

1.30 最大最小元素 (heapq.nlargest和heapq.nsmallest)

>>> a = [random.randint(0, 100) for in xrange(100)]

>>> heapq.nsmallest(5, a)

[3, 3, 5, 6, 8]

>>> heapq.nlargest(5, a)

[100, 100, 99, 98, 98]

1.31 笛卡尔乘积 (itertools.product)

>>> for p in itertools.product([1, 2, 3], [4, 5]):

(1, 4)

(1, 5)

(2, 4)

(2, 5)

(3, 4)

(3, 5)

>>> for p in itertools.product([0, 1], repeat=4):

... print ''.join(str(x) for x in p)

...

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

1.32 组合的组合和置换 (itertools.combinations 和 itertools.combinations_with_replacement)

>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):

... print ''.join(str(x) for x in c)

...

123

124

125

134

135

145

234

235

245

345

>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):

... print ''.join(str(x) for x in c)

...

11

12

13

22

23

33

1.33 排序 (itertools.permutations)

>>> for p in itertools.permutations([1, 2, 3, 4]):

... print ''.join(str(x) for x in p)

...

1234

1243

1324

1342

1423

1432

2134

2143

2314

2341

2413

2431

3124

3142

3214

3241

3412

3421

4123

4132

4213

4231

4312

4321

1.34 链接的迭代 (itertools.chain)

>>> a = [1, 2, 3, 4]

>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):

... print p

...

(1, 2)

(1, 3)

(1, 4)

(2, 3)

(2, 4)

(3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))

... print subset

...

()

(1,)

(2,)

(3,)

(4,)

(1, 2)

(1, 3)

(1, 4)

(2, 3)

(2, 4)

(3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

(1, 2, 3, 4)

1.35 按给定值分组行 (itertools.groupby)

>>> from operator import itemgetter

>>> import itertools

>>> with open('contactlenses.csv', 'r') as infile:

... data = [line.strip().split(',') for line in infile]

...

>>> data = data[1:]

>>> def print_data(rows):

... print '\n'.join('\t'.join('{: <16}'.format(s) for s in row) for row in rows)

...

>>> print_data(data)

young myope no reduced none

young myope no normal soft

young myope yes reduced none

young myope yes normal hard

young hypermetrope no reduced none

young hypermetrope no normal soft

young hypermetrope yes reduced none

young hypermetrope yes normal hard

pre-presbyopic myope no reduced none

pre-presbyopic myope no normal soft

pre-presbyopic myope yes reduced none

pre-presbyopic myope yes normal hard

pre-presbyopic hypermetrope no reduced none

pre-presbyopic hypermetrope no normal soft

pre-presbyopic hypermetrope yes reduced none

pre-presbyopic hypermetrope yes normal none

presbyopic myope no reduced none

presbyopic myope no normal none

presbyopic myope yes reduced none

presbyopic myope yes normal hard

presbyopic hypermetrope no reduced none

presbyopic hypermetrope no normal soft

presbyopic hypermetrope yes reduced none

presbyopic hypermetrope yes normal none

>>> data.sort(key=itemgetter(-1))

>>> for value, group in itertools.groupby(data, lambda r: r[-1]):

... print '-----------'

... print 'Group: ' + value

... print_data(group)

...

-----------

Group: hard

young myope yes normal hard

young hypermetrope yes normal hard

pre-presbyopic myope yes normal hard

presbyopic myope yes normal hard

-----------

Group: none

young myope no reduced none

young myope yes reduced none

young hypermetrope no reduced none

young hypermetrope yes reduced none

pre-presbyopic myope no reduced none

pre-presbyopic myope yes reduced none

pre-presbyopic hypermetrope no reduced none

pre-presbyopic hypermetrope yes reduced none

pre-presbyopic hypermetrope yes normal none

presbyopic myope no reduced none

presbyopic myope no normal none

presbyopic myope yes reduced none

presbyopic hypermetrope no reduced none

presbyopic hypermetrope yes reduced none

presbyopic hypermetrope yes normal none

-----------

Group: soft

young myope no normal soft

young hypermetrope no normal soft

pre-presbyopic myope no normal soft

pre-presbyopic hypermetrope no normal soft

presbyopic hypermetrope no normal soft

文档

必看的的30个Python语言的特点技巧(3)

必看的的30个Python语言的特点技巧(3):从我开始学习Python时我就决定维护一个经常使用的窍门列表。不论何时当我看到一段让我觉得酷,这样也行!的代码时(在一个例子中、在StackOverflow、在开源码软件中,等等),我会尝试它直到理解它,然后把它添加到列表中。这篇文章是清理过列表的一
推荐度:
标签: 特点 技巧 好看
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top