最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 科技 - 知识百科 - 正文

图文讲解选择排序算法的原理及在Python中的实现示例

来源:动视网 责编:小采 时间:2020-11-27 14:16:29
文档

图文讲解选择排序算法的原理及在Python中的实现示例

图文讲解选择排序算法的原理及在Python中的实现示例:基本思想:从未排序的序列中找到一个最小的元素,放到第一位,再从剩余未排序的序列中找到最小的元素,放到第二位,依此类推,直到所有元素都已排序完毕。假设序列元素总共n+1个,则我们需要找n轮,就可以使该序列排好序。在每轮中,我们可以这样做:用未排序
推荐度:
导读图文讲解选择排序算法的原理及在Python中的实现示例:基本思想:从未排序的序列中找到一个最小的元素,放到第一位,再从剩余未排序的序列中找到最小的元素,放到第二位,依此类推,直到所有元素都已排序完毕。假设序列元素总共n+1个,则我们需要找n轮,就可以使该序列排好序。在每轮中,我们可以这样做:用未排序
 基本思想:从未排序的序列中找到一个最小的元素,放到第一位,再从剩余未排序的序列中找到最小的元素,放到第二位,依此类推,直到所有元素都已排序完毕。假设序列元素总共n+1个,则我们需要找n轮,就可以使该序列排好序。在每轮中,我们可以这样做:用未排序序列的第一个元素和后续的元素依次相比较,如果后续元素小,则后续元素和第一个元素交换位置放到,这样一轮后,排在第一位的一定是最小的。这样进行n轮,就可排序。

原理图
图1:

图2:

初始数据不敏感,不管初始的数据有没有排好序,都需要经历N2/2次比较,这对于一些原本排好序,或者近似排好序的序列来说并不具有优势。在最好的情况下,即所有的排好序,需要0次交换,最差的情况,倒序,需要N-1次交换。

数据交换的次数较少,如果某个元素位于正确的最终位置上,则它不会被移动。在最差情况下也只需要进行N-1次数据交换,在所有的完全依靠交换去移动元素的排序方法中,选择排序属于比较好的一种。

python代码实现:

def sort_choice(numbers, max_to_min=True):
 """
 我这没有按照标准的选择排序,假设列表长度为n,思路如下:
 1、获取最大值x,将x移动到列最后。[n1, n2, n3, ... nn]
 2、将x追加到排序结果[n1, n3, ... nn, n2]
 3、获取排序后n-1个元素[n1, n3, ... nn],重复第一步,重复n-1次。

 max_to_min是指从大到小排序,默认为true;否则从小到大排序。
 对[8, 4, 1, 0, 9]排序,大致流程如下:
 sorted_numbers = []
 [8, 4, 1, 0, 9], sorted_numbers = [9]
 [4, 1, 0, 8], sorted_numbers = [9, 8]
 [1, 0, 4], sorted_numbers = [9, 8, 4]
 [0, 1], sorted_numbers = [9, 8, 4, 1]
 [0], sorted_numbers = [9, 8, 4, 1, 0]
 """
 if len(numbers) <= 1:
 return numbers
 sorted_list = []
 index = 0
 for i in xrange(len(numbers) - index):
 left_numbers = _get_left_numbers(numbers, max_to_min)
 numbers = left_numbers[:-1]
 sorted_list.append(left_numbers[-1])
 index += 1
 return sorted_list

def _get_left_numbers(numbers, get_max=True):
 '''
 获取最大值或者最小值x,并且将x抽取出来,置于列表最后.
 Ex: get_max=True, [1, 4, 3] ? [1, 3, 4] 
 get_max=False, [1, 4, 3] ? [4, 3 ,1] 
 '''
 max_index = 0
 for i, num in enumerate(numbers):
 if get_max:
 if num > numbers[max_index]:
 max_index = i
 else:
 if num < numbers[max_index]:
 max_index = i
 numbers = numbers[:max_index] + numbers[max_index + 1:] + [numbers[max_index]]
 return numbers

测试一下:

>>> get_left_numbers([0, 4, 0, 31, 9, 19, 89,67], get_max=True)
[0, 4, 0, 31, 9, 19, 67, 89]
>>> get_left_numbers([0, 4, 0, 31, 9, 19, 89,67], get_max=False)
[4, 0, 31, 9, 19, 89, 67, 0]

>>> sort_choice([0, 4, 0, 31, 9, 19, 89,67], max_to_min=False)
[0, 0, 4, 9, 19, 31, 67, 89]
>>> sort_choice([0, 4, 0, 31, 9, 19, 89,67], max_to_min=True)
[89, 67, 31, 19, 9, 4, 0, 0]

更多图文讲解选择排序算法的原理及在Python中的实现示例相关文章请关注PHP中文网!

文档

图文讲解选择排序算法的原理及在Python中的实现示例

图文讲解选择排序算法的原理及在Python中的实现示例:基本思想:从未排序的序列中找到一个最小的元素,放到第一位,再从剩余未排序的序列中找到最小的元素,放到第二位,依此类推,直到所有元素都已排序完毕。假设序列元素总共n+1个,则我们需要找n轮,就可以使该序列排好序。在每轮中,我们可以这样做:用未排序
推荐度:
标签: 原理 排序 的原理
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top