最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 科技 - 知识百科 - 正文

跟老齐学Python之集合的关系

来源:动视网 责编:小采 时间:2020-11-27 14:17:34
文档

跟老齐学Python之集合的关系

跟老齐学Python之集合的关系:冻结的集合 前面一节讲述了集合的基本概念,注意,那里所涉及到的集合都是可原处修改的集合。还有一种集合,不能在原处修改。这种集合的创建方法是: >>> f_set = frozenset(qiwsir) #看这个名字就知道了frozen,冻结的set >>> f_set fr
推荐度:
导读跟老齐学Python之集合的关系:冻结的集合 前面一节讲述了集合的基本概念,注意,那里所涉及到的集合都是可原处修改的集合。还有一种集合,不能在原处修改。这种集合的创建方法是: >>> f_set = frozenset(qiwsir) #看这个名字就知道了frozen,冻结的set >>> f_set fr
 冻结的集合

前面一节讲述了集合的基本概念,注意,那里所涉及到的集合都是可原处修改的集合。还有一种集合,不能在原处修改。这种集合的创建方法是:

>>> f_set = frozenset("qiwsir") #看这个名字就知道了frozen,冻结的set
>>> f_set
frozenset(['q', 'i', 's', 'r', 'w'])
>>> f_set.add("python") #报错
Traceback (most recent call last):
 File "", line 1, in 
AttributeError: 'frozenset' object has no attribute 'add'

>>> a_set = set("github") #对比看一看,这是一个可以原处修改的set
>>> a_set
set(['b', 'g', 'i', 'h', 'u', 't'])
>>> a_set.add("python")
>>> a_set
set(['b', 'g', 'i', 'h', 'python', 'u', 't'])

集合运算

先复习一下中学数学(准确说是高中数学中的一点知识)中关于集合的一点知识,主要是唤起那痛苦而青涩美丽的回忆吧,至少对我是。

元素与集合的关系

元素是否属于某个集合。

>>> aset
set(['h', 'o', 'n', 'p', 't', 'y'])
>>> "a" in aset
False
>>> "h" in aset
True

集合与集合的纠结

假设两个集合A、B

A是否等于B,即两个集合的元素完全一样
在交互模式下实验

>>> a 
set(['q', 'i', 's', 'r', 'w'])
>>> b
set(['a', 'q', 'i', 'l', 'o'])
>>> a == b
False
>>> a != b
True

A是否是B的子集,或者反过来,B是否是A的超集。即A的元素也都是B的元素,但是B的元素比A的元素数量多。
实验一下

>>> a
set(['q', 'i', 's', 'r', 'w'])
>>> c
set(['q', 'i'])
>>> c>> c.issubset(a) #或者用这种方法,判断c是否是a的子集
True
>>> a.issuperset(c) #判断a是否是c的超集
True

>>> b
set(['a', 'q', 'i', 'l', 'o'])
>>> a>> a.issubset(b) #或者这样做
False

A、B的并集,即A、B所有元素,如下图所示


>>> a
set(['q', 'i', 's', 'r', 'w'])
>>> b
set(['a', 'q', 'i', 'l', 'o'])
>>> a | b #可以有两种方式,结果一样
set(['a', 'i', 'l', 'o', 'q', 's', 'r', 'w'])
>>> a.union(b)
set(['a', 'i', 'l', 'o', 'q', 's', 'r', 'w'])

A、B的交集,即A、B所公有的元素,如下图所示


>>> a
set(['q', 'i', 's', 'r', 'w'])
>>> b
set(['a', 'q', 'i', 'l', 'o'])
>>> a & b #两种方式,等价
set(['q', 'i'])
>>> a.intersection(b)
set(['q', 'i'])

我在实验的时候,顺手敲了下面的代码,出现的结果如下,看官能解释一下吗?(思考题)

>>> a and b
set(['a', 'q', 'i', 'l', 'o'])

A相对B的差(补),即A相对B不同的部分元素,如下图所示


>>> a
set(['q', 'i', 's', 'r', 'w'])
>>> b
set(['a', 'q', 'i', 'l', 'o'])
>>> a - b
set(['s', 'r', 'w'])
>>> a.difference(b)
set(['s', 'r', 'w'])

-A、B的对称差集,如下图所示

>>> a
set(['q', 'i', 's', 'r', 'w'])
>>> b
set(['a', 'q', 'i', 'l', 'o'])
>>> a.symmetric_difference(b)
set(['a', 'l', 'o', 's', 'r', 'w'])

以上是集合的基本运算。在编程中,如果用到,可以用前面说的方法查找。不用死记硬背。

文档

跟老齐学Python之集合的关系

跟老齐学Python之集合的关系:冻结的集合 前面一节讲述了集合的基本概念,注意,那里所涉及到的集合都是可原处修改的集合。还有一种集合,不能在原处修改。这种集合的创建方法是: >>> f_set = frozenset(qiwsir) #看这个名字就知道了frozen,冻结的set >>> f_set fr
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top