4. 激励函数activationfunction
Torch的激励函数都在torch.nn.functional中,relu,sigmoid, tanh, softplus都是常用的激励函数。
相关代码:
import torch import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt x = torch.linspace(-5, 5, 200) x_variable = Variable(x) #将x放入Variable x_np = x_variable.data.numpy() # 经过4种不同的激励函数得到的numpy形式的数据结果 y_relu = F.relu(x_variable).data.numpy() y_sigmoid = F.sigmoid(x_variable).data.numpy() y_tanh = F.tanh(x_variable).data.numpy() y_softplus = F.softplus(x_variable).data.numpy() plt.figure(1, figsize=(8, 6)) plt.subplot(221) plt.plot(x_np, y_relu, c='red', label='relu') plt.ylim((-1, 5)) plt.legend(loc='best') plt.subplot(222) plt.plot(x_np, y_sigmoid, c='red', label='sigmoid') plt.ylim((-0.2, 1.2)) plt.legend(loc='best') plt.subplot(223) plt.plot(x_np, y_tanh, c='red', label='tanh') plt.ylim((-1.2, 1.2)) plt.legend(loc='best') plt.subplot(224) plt.plot(x_np, y_softplus, c='red', label='softplus') plt.ylim((-0.2, 6)) plt.legend(loc='best') plt.show()
二、PyTorch实现回归
先看完整代码:
import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # 将1维的数据转换为2维数据 y = x.pow(2) + 0.2 * torch.rand(x.size()) # 将tensor置入Variable中 x, y = Variable(x), Variable(y) #plt.scatter(x.data.numpy(), y.data.numpy()) #plt.show() # 定义一个构建神经网络的类 class Net(torch.nn.Module): # 继承torch.nn.Module类 def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() # 获得Net类的超类(父类)的构造方法 # 定义神经网络的每层结构形式 # 各个层的信息都是Net类对象的属性 self.hidden = torch.nn.Linear(n_feature, n_hidden) # 隐藏层线性
首先创建一组带噪声的二次函数拟合数据,置于Variable中。定义一个构建神经网络的类Net,继承torch.nn.Module类。Net类的构造方法中定义输入神经元、隐藏层神经元、输出神经元数量的参数,通过super()方法获得Net父类的构造方法,以属性的方式定义Net的各个层的结构形式;定义Net的forward()方法将各层的神经元搭建成完整的神经网络前向通路。
定义好Net类后,定义神经网络实例,Net类实例可以直接print打印输出神经网络的结构信息。接着定义神经网络的优化器和损失函数。定义好这些后就可以进行训练了。optimizer.zero_grad()、loss.backward()、optimizer.step()分别是清空上一步的更新参数值、进行误差的反向传播并计算新的更新参数值、将计算得到的更新值赋给net.parameters()。循环迭代训练过程。
运行结果:
Net (
(hidden): Linear (1 -> 10)
(predict): Linear (10 -> 1)
)
三、PyTorch实现简单分类
完整代码:
import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt # 生成数据 # 分别生成2组各100个数据点,增加正态噪声,后标记以y0=0 y1=1两类标签,最后cat连接到一起 n_data = torch.ones(100,2) # torch.normal(means, std=1.0, out=None) x0 = torch.normal(2*n_data, 1) # 以tensor的形式给出
神经网络结构部分的Net类与前文的回归部分的结构相同。
需要注意的是,在循环迭代训练部分,out定义为神经网络的输出结果,计算误差loss时不是使用one-hot形式的,loss是定义在out与y上的torch.nn.CrossEntropyLoss(),而预测值prediction定义为out经过Softmax后(将结果转化为概率值)的结果。
运行结果:
Net (
(hidden): Linear (2 -> 10)
(out):Linear (10 -> 2)
)
四、补充知识
1. super()函数
在定义Net类的构造方法的时候,使用了super(Net,self).__init__()语句,当前的类和对象作为super函数的参数使用,这条语句的功能是使Net类的构造方法获得其超类(父类)的构造方法,不影响对Net类单独定义构造方法,且不必关注Net类的父类到底是什么,若需要修改Net类的父类时只需修改class语句中的内容即可。
2. torch.normal()
torch.normal()可分为三种情况:(1)torch.normal(means,std, out=None)中means和std都是Tensor,两者的形状可以不必相同,但Tensor内的元素数量必须相同,一一对应的元素作为输出的各元素的均值和标准差;(2)torch.normal(mean=0.0, std, out=None)中mean是一个可定义的float,各个元素共享该均值;(3)torch.normal(means,std=1.0, out=None)中std是一个可定义的float,各个元素共享该标准差。
3. torch.cat(seq, dim=0)
torch.cat可以将若干个Tensor组装连接起来,dim指定在哪个维度上进行组装。
4. torch.max()
(1)torch.max(input)→ float
input是tensor,返回input中的最大值float。
(2)torch.max(input,dim, keepdim=True, max=None, max_indices=None) -> (Tensor, LongTensor)
同时返回指定维度=dim上的最大值和该最大值在该维度上的索引值。