最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 科技 - 知识百科 - 正文

Python生成器定义与简单用法实例分析

来源:懂视网 责编:小采 时间:2020-11-27 14:21:48
文档

Python生成器定义与简单用法实例分析

Python生成器定义与简单用法实例分析:这篇文章主要介绍了Python生成器定义与简单用法,结合实例形式较为详细的分析了Python生成器的概念、原理、使用方法及相关操作注意事项,需要的朋友可以参考下本文实例讲述了Python生成器定义与简单用法。分享给大家供大家参考,具体如下:一、什么是生成器在P
推荐度:
导读Python生成器定义与简单用法实例分析:这篇文章主要介绍了Python生成器定义与简单用法,结合实例形式较为详细的分析了Python生成器的概念、原理、使用方法及相关操作注意事项,需要的朋友可以参考下本文实例讲述了Python生成器定义与简单用法。分享给大家供大家参考,具体如下:一、什么是生成器在P

B、yield关键字

在一个函数定义中包含yield关键字,则这个函数就不再是一个普通的函数,而是一个生成器(generator)

[说明]:yield指令可以暂停一个函数并返回其中间结果,使用该指令的函数将保存执行环境,并在必要时恢复

def fib(max):
 n,a,b=0,0,1
 while n<max:
 #print(b)
 yield b
 a,b=b,a+b
 n+=1
 return 'done'
f=fib(6)
print(f)

运行结果:

<generator object fib at 0x0000000002553150>

[注]:普通函数和变成生成器的函数的不同:

普通函数是顺序执行的,遇到return或是最后一行函数语句就返回。而变成生成器的函数在每次调用__next__()方法时执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行

f=fib(6)
print(f)
print(f.__next__())
print(f.__next__())
print('暂停一下')
print(f.__next__())
print(f.__next__())

运行结果:

<generator object fib at 0x00000000025631A8>
1
1
暂停一下
2
3

三、生成器方法(参考:伯乐在线)

1.close()方法:手动关闭生成器函数,后面的调用会直接返回StopIteration异常

def func():
 yield 1
 yield 2
 yield 3
g=func()
g.__next__()
g.close() #手动关闭生成器
g.__next__() #关闭后,yield 2和yield 3语句将不再起作用

运行结果:

Traceback (most recent call last):
File "E:py3DemoHellogeneratorDemo.py", line 9, in <module>
g.__next__() #关闭后,yield 2和yield 3语句将不再起作用
StopIteration

2.__next__()方法:返回生成器的下一次调用

def func():
 n=1
 for i in range(3):
 yield n
 n+=1
c=func()
a1=c.__next__()
a2=c.__next__()
a3=c.__next__()

[流程解释]:

对于普通的生成器,第一个__next__()方法的调用相当于启动生成器,此时会从生成器函数的第一行开始执行,直到第一次执行完yield语句(第四行)后,跳出生成器函数。

当调用第二个__next__()方法后,会重新进入生成器函数,并从yield语句的下一条语句(第五行)开始执行,直到重新运行到yield语句,执行后再次跳出生成器函数。

后面的__next__()方法调用以此类推

3.send()方法:接受外部传入的一个变量,并根据变量内容计算结果返回到生成器函数中

[注]:

(1)send()方法和__next__()方法相似,区别在于send()方法可以传递给yield表达式值,而__next__()方法不能传递特定的值,只能传递None给yield表达式,因此可以将generator.__next__()理解为generator.send(None)

(2)第一次调用生成器函数时,必须使用__next__()语句或是send(None),不能使用send发送一个非None的值给生成器函数,否则会出错,因为没有yield语句来接收这个值

def gen():
 value=0
 while True:
 receive=yield value
 if receive=='end':
 break
 value='Got:%s' %receive
g=gen()
print(g.__next__()) #或是print(g.send(None)),从而启动生成器
print(g.send('aaa'))
print(g.send(3))
print(g.send('end'))

运行结果:

0
Got:aaa
Got:3
Traceback (most recent call last):
File "E:py3DemoHellogeneratorDemo.py", line 13, in <module>
print(g.send('end'))
StopIteration

[流程解释]:

a.通过g.send(None)或g.__next__()启动生成器函数,并执行到第一个yield语句结束的位置并将函数挂起。此时执行完了yield语句,但是没有给receive赋值,因此yield value会输出value的初始值0

b.g.send('aaa')先将字符串‘aaa'传入到生成器函数中并赋值给receive,然后从yield语句的下一句重新开始执行函数(第五句),计算出value的值后返回到while头部开始新一轮的循环,执行到yield value语句时停止,此时yield value会输出‘Got:aaa',然后挂起

c.g.send(3)重复步骤b,最后输出结果为‘Got:3'

d.g.send('end')会使程序执行break然后跳出循环,从而函数执行完毕,得到StopIteration异常

4.throw()方法:向生成器发送一个异常。

def gen():
 while True:
 try:
 yield 'normal value' #返回中间结果,此处的yield和return的功能相似
 yield 'normal value2'
 print('I am here')
 except ValueError:
 print('We got ValueError')
 except Exception:
 print('Other errors')
 break
g=gen()
print(g.__next__())
print(g.throw(ValueError))
print(g.__next__())
print(g.throw(TypeError))

运行结果:

Traceback (most recent call last):
File "E:py3DemoHellogeneratorDemo.py", line 17, in <module>
print(g.throw(TypeError))
StopIteration
normal value
We got ValueError
normal value
normal value2
Other errors

[解释]:

a.print(g.__next__())会输出normal value,并停在yield 'normal value2'之前

b.由于执行了g.throw(ValueError),所以回跳过后续的try语句,即yield ‘normal value2'不会执行,然后进入到except语句,打印出‘We got ValueError'。之后再次进入到while语句部分,消耗一个yield,输出normal value

c.print(g.__next__())会执行yield ‘normal value2'语句,并停留在执行完该语句后的位置

d.g.throw(TypeError)会跳出try语句,因此print('I am here')不会被执行,然后打印‘Other errors',并执行break语句跳出while循环,然后到达程序结尾,打印StopIteration异常的信息

四、生成器的运用

import time
def consumer(name):
 print('%s准备吃包子啦!' %name)
 while True:
 baozi=yield #接收send传的值,并将值赋值给变量baozi
 print('包子[%s]来了,被[%s]吃了!' %(baozi,name))
def producer(name):
 c1=consumer('A') #把函数变成一个生成器
 c2=consumer('B')
 c1.__next__()#调用这个方法会走到yield处暂时返回
 c2.__next__()
 print('开始准备做包子啦!')
 for i in range(10):
 time.sleep(1)
 print('做了一个包子,分成两半')
 c1.send(i)
 c2.send(i)
producer('Tomwenxing')

运行结果:

A准备吃包子啦!
B准备吃包子啦!
开始准备做包子啦!
做了一个包子,分成两半
包子[0]来了,被[A]吃了!
包子[0]来了,被[B]吃了!
做了一个包子,分成两半
包子[1]来了,被[A]吃了!
包子[1]来了,被[B]吃了!
做了一个包子,分成两半
包子[2]来了,被[A]吃了!
包子[2]来了,被[B]吃了!
做了一个包子,分成两半
包子[3]来了,被[A]吃了!
包子[3]来了,被[B]吃了!
做了一个包子,分成两半
包子[4]来了,被[A]吃了!
包子[4]来了,被[B]吃了!
做了一个包子,分成两半
包子[5]来了,被[A]吃了!
包子[5]来了,被[B]吃了!
做了一个包子,分成两半
包子[6]来了,被[A]吃了!
包子[6]来了,被[B]吃了!
做了一个包子,分成两半
包子[7]来了,被[A]吃了!
包子[7]来了,被[B]吃了!
做了一个包子,分成两半
包子[8]来了,被[A]吃了!
包子[8]来了,被[B]吃了!
做了一个包子,分成两半
包子[9]来了,被[A]吃了!
包子[9]来了,被[B]吃了!

文档

Python生成器定义与简单用法实例分析

Python生成器定义与简单用法实例分析:这篇文章主要介绍了Python生成器定义与简单用法,结合实例形式较为详细的分析了Python生成器的概念、原理、使用方法及相关操作注意事项,需要的朋友可以参考下本文实例讲述了Python生成器定义与简单用法。分享给大家供大家参考,具体如下:一、什么是生成器在P
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top