最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 教育 - 知识百科 - 正文

L1和L2正则化优化的区别

来源:懂视网 责编:小采 时间:2020-11-19 06:23:38
文档

L1和L2正则化优化的区别

L1是模型各个参数的绝对值之和。L2是模型各个参数的平方和的开方值。L1会趋向于产生少量的特征,而其他的特征都是0,因为最优的参数值很大概率出现在坐标轴上,这样就会导致某一维的权重为0,产生稀疏权重矩阵。L2会选择更多的特征,这些特征都会接近于0。
推荐度:
导读L1是模型各个参数的绝对值之和。L2是模型各个参数的平方和的开方值。L1会趋向于产生少量的特征,而其他的特征都是0,因为最优的参数值很大概率出现在坐标轴上,这样就会导致某一维的权重为0,产生稀疏权重矩阵。L2会选择更多的特征,这些特征都会接近于0。

l1和l2正则化的区别是:

  

  1、L1是模型各个参数的绝对值之和。L2是模型各个参数的平方和的开方值。

  

  2、L1会趋向于产生少量的特征,而其他的特征都是0,因为最优的参数值很大概率出现在坐标轴上,这样就会导致某一维的权重为0 ,产生稀疏权重矩阵。L2会选择更多的特征,这些特征都会接近于0。

  

  3、最优的参数值很小概率出现在坐标轴上,因此每一维的参数都不会是0。当最小化||w||时,就会使每一项趋近于0。

  

  

文档

L1和L2正则化优化的区别

L1是模型各个参数的绝对值之和。L2是模型各个参数的平方和的开方值。L1会趋向于产生少量的特征,而其他的特征都是0,因为最优的参数值很大概率出现在坐标轴上,这样就会导致某一维的权重为0,产生稀疏权重矩阵。L2会选择更多的特征,这些特征都会接近于0。
推荐度:
标签: 有什么 区别 比较
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题test专题md5算法专题ttest函数专题斐波那契数列递归算法专题斐波那契数列非递归算法专题斐波那契数列递归专题递归实现斐波那契数列专题斐波那契数列前n项和专题test test专题推荐算法专题model test专题suffering可数吗专题l1和l2正则化的区别专题L1和L2正则化优化的区别专题bread可数还是不可数专题ipv6test专题hash算法专题ipv6 test专题负载均衡算法专题prim算法专题
Top