最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 科技 - 知识百科 - 正文

探究Python多进程编程下线程之间变量的共享问题

来源:懂视网 责编:小采 时间:2020-11-27 14:41:46
文档

探究Python多进程编程下线程之间变量的共享问题

探究Python多进程编程下线程之间变量的共享问题: 1、问题: 群中有同学贴了如下一段代码,问为何 list 最后打印的是空值? from multiprocessing import Process, Manager import os manager = Manager() vip_list = [] #vip_list = manager.list() def t
推荐度:
导读探究Python多进程编程下线程之间变量的共享问题: 1、问题: 群中有同学贴了如下一段代码,问为何 list 最后打印的是空值? from multiprocessing import Process, Manager import os manager = Manager() vip_list = [] #vip_list = manager.list() def t

1、问题:

群中有同学贴了如下一段代码,问为何 list 最后打印的是空值?

from multiprocessing import Process, Manager
import os
 
manager = Manager()
vip_list = []
#vip_list = manager.list()
 
def testFunc(cc):
 vip_list.append(cc)
 print 'process id:', os.getpid()
 
if __name__ == '__main__':
 threads = []
 
 for ll in range(10):
 t = Process(target=testFunc, args=(ll,))
 t.daemon = True
 threads.append(t)
 
 for i in range(len(threads)):
 threads[i].start()
 
 for j in range(len(threads)):
 threads[j].join()
 
 print "------------------------"
 print 'process id:', os.getpid()
 print vip_list

其实如果你了解 python 的多线程模型,GIL 问题,然后了解多线程、多进程原理,上述问题不难回答,不过如果你不知道也没关系,跑一下上面的代码你就知道是什么问题了。

python aa.py
process id: 632
process id: 635
process id: 637
process id: 633
process id: 636
process id: 634
process id: 639
process id: 638
process id: 641
process id: 640
------------------------
process id: 619
[]

将第 6 行注释开启,你会看到如下结果:

process id: 32074
process id: 32073
process id: 32072
process id: 32078
process id: 32076
process id: 32071
process id: 32077
process id: 32079
process id: 32075
process id: 32080
------------------------
process id: 32066
[3, 2, 1, 7, 5, 0, 6, 8, 4, 9]

2、python 多进程共享变量的几种方式:
(1)Shared memory:
Data can be stored in a shared memory map using Value or Array. For example, the following code

http://docs.python.org/2/library/multiprocessing.html#sharing-state-between-processes

from multiprocessing import Process, Value, Array
 
def f(n, a):
 n.value = 3.1415927
 for i in range(len(a)):
 a[i] = -a[i]
 
if __name__ == '__main__':
 num = Value('d', 0.0)
 arr = Array('i', range(10))
 
 p = Process(target=f, args=(num, arr))
 p.start()
 p.join()
 
 print num.value
 print arr[:]

结果:

3.1415927
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

(2)Server process:

A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.
A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Queue, Value and Array.
代码见开头的例子。

http://docs.python.org/2/library/multiprocessing.html#managers
3、多进程的问题远不止这么多:数据的同步

看段简单的代码:一个简单的计数器:

from multiprocessing import Process, Manager
import os
 
manager = Manager()
sum = manager.Value('tmp', 0)
 
def testFunc(cc):
 sum.value += cc
 
if __name__ == '__main__':
 threads = []
 
 for ll in range(100):
 t = Process(target=testFunc, args=(1,))
 t.daemon = True
 threads.append(t)
 
 for i in range(len(threads)):
 threads[i].start()
 
 for j in range(len(threads)):
 threads[j].join()
 
 print "------------------------"
 print 'process id:', os.getpid()
 print sum.value

结果:

------------------------
process id: 17378
97

也许你会问:WTF?其实这个问题在多线程时代就存在了,只是在多进程时代又杯具重演了而已:Lock!

from multiprocessing import Process, Manager, Lock
import os
 
lock = Lock()
manager = Manager()
sum = manager.Value('tmp', 0)
 
 
def testFunc(cc, lock):
 with lock:
 sum.value += cc
 
 
if __name__ == '__main__':
 threads = []
 
 for ll in range(100):
 t = Process(target=testFunc, args=(1, lock))
 t.daemon = True
 threads.append(t)
 
 for i in range(len(threads)):
 threads[i].start()
 
 for j in range(len(threads)):
 threads[j].join()
 
 print "------------------------"
 print 'process id:', os.getpid()
 print sum.value

这段代码性能如何呢?跑跑看,或者加大循环次数试一下。。
4、最后的建议:

Note that usually sharing data between processes may not be the best choice, because of all the synchronization issues; an approach involving actors exchanging messages is usually seen as a better choice. See also Python documentation: As mentioned above, when doing concurrent programming it is usually best to avoid using shared state as far as possible. This is particularly true when using multiple processes. However, if you really do need to use some shared data then multiprocessing provides a couple of ways of doing so.

5、Refer:

http://stackoverflow.com/questions/14124588/python-multiprocessing-shared-memory

http://eli.thegreenplace.net/2012/01/04/shared-counter-with-pythons-multiprocessing/

http://docs.python.org/2/library/multiprocessing.html#multiprocessing.sharedctypes.synchronized

文档

探究Python多进程编程下线程之间变量的共享问题

探究Python多进程编程下线程之间变量的共享问题: 1、问题: 群中有同学贴了如下一段代码,问为何 list 最后打印的是空值? from multiprocessing import Process, Manager import os manager = Manager() vip_list = [] #vip_list = manager.list() def t
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top