最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 科技 - 知识百科 - 正文

爬山算法简介和Python实现实例

来源:动视网 责编:小采 时间:2020-11-27 14:38:35
文档

爬山算法简介和Python实现实例

爬山算法简介和Python实现实例:一、爬山法简介 爬山法(climbing method)是一种优化算法,其一般从一个随机的解开始,然后逐步找到一个最优解(局部最优)。 假定所求问题有多个参数,我们在通过爬山法逐步获得最优解的过程中可以依次分别将某个参数的值增加或者减少一个单位。例如某个问
推荐度:
导读爬山算法简介和Python实现实例:一、爬山法简介 爬山法(climbing method)是一种优化算法,其一般从一个随机的解开始,然后逐步找到一个最优解(局部最优)。 假定所求问题有多个参数,我们在通过爬山法逐步获得最优解的过程中可以依次分别将某个参数的值增加或者减少一个单位。例如某个问


一、爬山法简介

爬山法(climbing method)是一种优化算法,其一般从一个随机的解开始,然后逐步找到一个最优解(局部最优)。 假定所求问题有多个参数,我们在通过爬山法逐步获得最优解的过程中可以依次分别将某个参数的值增加或者减少一个单位。例如某个问题的解需要使用3个整数类型的参数x1、x2、x3,开始时将这三个参数设值为(2,2,-2),将x1增加/减少1,得到两个解(1,2,-2), (3, 2,-2);将x2增加/减少1,得到两个解(2,3, -2),(2,1, -2);将x3增加/减少1,得到两个解(2,2,-1),(2,2,-3),这样就得到了一个解集:
(2,2,-2), (1, 2,-2), (3, 2,-2), (2,3,-2), (2,1,-2), (2,2,-1), (2,2,-3)
从上面的解集中找到最优解,然后将这个最优解依据上面的方法再构造一个解集,再求最优解,就这样,直到前一次的最优解和后一次的最优解相同才结束“爬山”。

二、Python实例

设方程 y = x1+x2-x3,x1是区间[-2, 5]中的整数,x2是区间[2, 6]中的整数,x3是区间[-5, 2]中的整数。使用爬山法,找到使得y取值最小的解。

代码如下:

代码如下:


import random

def evaluate(x1, x2, x3):
return x1+x2-x3

if __name__ == '__main__':
x_range = [ [-2, 5], [2, 6], [-5, 2] ]
best_sol = [random.randint(x_range[0][0], x_range[0][1]),
random.randint(x_range[1][0], x_range[1][1]),
random.randint(x_range[2][0], x_range[2][1])]

while True:
best_evaluate = evaluate(best_sol[0], best_sol[1], best_sol[2])
current_best_value = best_evaluate
sols = [best_sol]

for i in xrange(len(best_sol)):
if best_sol[i] > x_range[i][0]:
sols.append(best_sol[0:i] + [best_sol[i]-1] + best_sol[i+1:])
if best_sol[i] < x_range[i][1]:
sols.append(best_sol[0:i] + [best_sol[i]+1] + best_sol[i+1:])
print sols
for s in sols:
el = evaluate(s[0], s[1], s[2])
if el < best_evaluate:
best_sol = s
best_evaluate = el
if best_evaluate == current_best_value:
break

print 'best sol:', current_best_value, best_sol
某次运行结果如下:

[[0, 5, 1], [-1, 5, 1], [1, 5, 1], [0, 4, 1], [0, 6, 1], [0, 5, 0], [0, 5, 2]]
[[-1, 5, 1], [-2, 5, 1], [0, 5, 1], [-1, 4, 1], [-1, 6, 1], [-1, 5, 0], [-1, 5, 2]]
[[-2, 5, 1], [-1, 5, 1], [-2, 4, 1], [-2, 6, 1], [-2, 5, 0], [-2, 5, 2]]
[[-2, 4, 1], [-1, 4, 1], [-2, 3, 1], [-2, 5, 1], [-2, 4, 0], [-2, 4, 2]]
[[-2, 3, 1], [-1, 3, 1], [-2, 2, 1], [-2, 4, 1], [-2, 3, 0], [-2, 3, 2]]
[[-2, 2, 1], [-1, 2, 1], [-2, 3, 1], [-2, 2, 0], [-2, 2, 2]]
[[-2, 2, 2], [-1, 2, 2], [-2, 3, 2], [-2, 2, 1]]
best sol: -2 [-2, 2, 2]


可以看到,最优解是-2,对应的x1、x2、x3分别取值-2、2、2。

三、如何找到全局最优

爬山法获取的最优解的可能是局部最优,如果要获得更好的解,多次使用爬山算法(需要从不同的初始解开始爬山),从多个局部最优解中找出最优解,而这个最优解也有可能是全局最优解。

另外,模拟退火算法也是一个试图找到全局最优解的算法。

文档

爬山算法简介和Python实现实例

爬山算法简介和Python实现实例:一、爬山法简介 爬山法(climbing method)是一种优化算法,其一般从一个随机的解开始,然后逐步找到一个最优解(局部最优)。 假定所求问题有多个参数,我们在通过爬山法逐步获得最优解的过程中可以依次分别将某个参数的值增加或者减少一个单位。例如某个问
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top