最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 教育 - 知识百科 - 正文

判断级数敛散性的方法

来源:动视网 责编:小OO 时间:2022-05-20 18:41:03
文档

判断级数敛散性的方法

1、先判断这是正项级数还是交错级数。2、判定正项级数的敛散性:先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步)。若不趋于零,则级数发散;若趋于零,则再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的,如果不是几何级数或p级数,则用比值判别法或根值判别法进行判别,如果两判别法均失效,则再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等。
推荐度:
导读1、先判断这是正项级数还是交错级数。2、判定正项级数的敛散性:先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步)。若不趋于零,则级数发散;若趋于零,则再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的,如果不是几何级数或p级数,则用比值判别法或根值判别法进行判别,如果两判别法均失效,则再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等。


1、先判断这是正项级数还是交错级数。

2、判定正项级数的敛散性:先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步)。若不趋于零,则级数发散;若趋于零,则再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的,如果不是几何级数或p级数,则用比值判别法或根值判别法进行判别,如果两判别法均失效,则再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等。

3、判定交错级数的敛散性:利用莱布尼茨判别法进行分析判定;利用绝对级数与原级数之间的关系进行判定;一般情况下,若级数发散,级数未必发散;但是如果用比值法或根值法判别出绝对级数发散,则级数必发散;有时可把级数通项拆分成两个,利用“收敛+发散=发散”“收敛+收敛=收敛”判定。

4、求幂级数的收敛半径、收敛区间和收敛域。若级数幂次是按x的自然数顺序递增,则其收敛半径由或求出,进而可以写出收敛区间,再考虑区间端点处数项级数的敛散性可得幂级数的收敛域;对于缺项幂级数或x的函数的幂级数,可根据比值判别法求收敛半径,也可作代换,换成t的幂级数,再求收敛半径。

5、求幂级数的和函数与数项级数的和:求幂级数的和函数主要先通过幂级数的代数运算、逐项微分、逐项积分等性质将其化为几何级数的形式,再求和;求数项级数的和,可利用定义求出部分和,再求极限;或转化为幂级数的和函数在某点的函数值。

6、将函数展开为傅里叶级数时需根据已有公式求出傅里叶系数,这时可根据函数的奇偶性简化系数的计算,然后再根据收敛性定理写出函数与其傅里叶级数之间的关系。

文档

判断级数敛散性的方法

1、先判断这是正项级数还是交错级数。2、判定正项级数的敛散性:先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步)。若不趋于零,则级数发散;若趋于零,则再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的,如果不是几何级数或p级数,则用比值判别法或根值判别法进行判别,如果两判别法均失效,则再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等。
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top